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Abstract: In this study, the stability constants of metal-thiosemicarbazone complexes, log11 were 

determined by using the quantitative structure property relationship (QSPR) models. The molecular 

descriptors, physicochemical and quantum descriptors of complexes were generated from molecular 

geometric structure and semi-empirical quantum calculation PM7 and PM7/sparkle. The QSPR models 

were built by using the ordinary least square regression (QSPROLS), partial least square regression 

(QSPRPLS), primary component regression (QSPRPCR) and artificial neural network (QSPRANN). The best 

linear model QSPROLS (with k of 9) involves descriptors C5, xp9, electric energy, cosmo volume, N4, 

SsssN, cosmo area, xp10 and core-core repulsion. The QSPRPLS, QSPR PCR and QSPRANN models were 

developed basing on 9 varibles of the QSPROLS model. The quality of the QSPR models were validated by 

the statistical values; The QSPROLS: R2
train = 0.944, Q2

LOO = 0.903 and MSE = 1.035; The QSPRPLS: R2
train 

= 0.929, R2
CV = 0.938 and MSE = 1.115; The QSPRPCR: R2

train = 0.934, R2
CV = 0.9485 and MSE = 1.147. 

The neural network model QSPRANN with architecture I(9)-HL(12)-O(1) was presented also with the 

statistical values: R2
train = 0.9723, and R2

CV = 0.9731. The QSPR models also were evaluated externally and 

got good performance results with those from the experimental literature. 

Keywords: QSPR, stability constants log11, ordinary least square regression, partial least square, primary 

component regression, artificial neural network, thiosemicarbazone. 

1. INTRODUCTION 

Thiosemicarbazone compounds and its metal complexes were widely researched in the world because 

of its diversified application areas in fact. In the field of chemistry, thiosemicarbazones are used as 

analytical reagents [1,2], they are also used as a catalyst in chemical reactions [3,4]. Besides, they also 

have application in biology [5], environment [6] and medicine [7,8]. 

For complexes, the stability constant of complexes is an important factor. This is hold to identify the 

complex stability in solutions with different solvents. The stability constant of complexes is the hinge 

parameter to explain phenomenon such as the mechanism of reaction and distinct properties of the 

biological systems. Augmentation, it is also a measure of the power of the interaction between the metal 

ions and the ligand to form complexes. We can calculate the equilibrium concentration of substances in a 

solution upon the stability constant. The changes of the complex structure in solutions can be forecasted by 

using the initial concentration of the metal ion and the ligand. 

In recent years, the stability constant of the complexes has been researched by incorporating the UV/VIS 

spectrophotometric method and the computational chemistry [9]. Furthermore, the in silico methods that 

QSAR/QSPR methods are also used for predicting properties/activities of complexes based on the 

relationships between the structural descriptors and the properties/activities [9]. Here, a few complex 

descriptors between the metal ions and thiosemicarbazone were determined by quantum mechanics 

methods [10–12 ]. 
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On the other hand, computer science has evolved dramatically, it has been becoming a helpful tool to 

develop computational chemistry such as material simulation and data mining [13–16]. The molecular 

design by means of a computer is also a way to accelerate the discovery process for resulting knowledge of 

material properties. This is also a tendency to reduce the classical trial-and-error approach [17]. In this case, 

the development of molecular models such as the quantitative structure and property relationship (QSPR) 

and conformational search methodologies has also contributed greatly to the discovery and development of 

new molecules [18,19]. In this way, the multivariate analysis methods have been becoming a convenient 

and an easy tool for supporting empirical and theoretical models. The multivariable linear relationships can 

be used to assess the different characteristics of the systems. 

In this work, we successfully constructed of the quantitative structure and properties relationships 

(QSPRs) using the 2D and 3D-descriptors, structural descriptors and stability constant of complexes 

between the metal ions and thiosemicarbazone. The structural descriptors are calculated by using the semi-

empirical quantum chemistry method with new version PM7 and PM7/sparkle [20], molecular mechanics, 

and connectivity calculation. Three multivariate regression models are established QSPROLS, QSPRPLS and 

QSPRPCR models by using the ordinary least square regression, partial least square regression and primary 

component regression methods. In addition, the artificial neural network model QSPRANN is constructed by 

the error back-propagation method using multilayer perceptron algorithm with the input layer that includes 

variables of the best selected QSPROLS model. The stability constant log11 of the metal-thiosemicarbazone 

in the test set resulting from the QSPR models is validated and compared with those from experimental 

data in the published scientific works. 

2. COMPUTATIONAL METHODS 

In order to develop a QSPR model, there are several steps must be considered [21] which are described 

in detail in the following subsections. 

2.1. Stability constant of complex and data selection 

In an aqueous solution, the formation of a complex between a metal ion (M) and a thiosemicarbazone 

ligand (L) is the general equilibrium reaction [14] 

p M + q L   ⇌   MpLq (1) 

The stability constant, given the symbol β, is the constant for the formation of the complex from the 

reagents. The stability constant for the formation of MpLq is given by  

p q

p q

[M L ]

[M] [L]
pq   (2) 

In one step with p = 1 and q = 1, the stability constant, given the symbol β11, is the stability constant for 

the formation of ML, it is given by  

11

[ML]

[M][L]
   (3) 

a)             b)      

Figure 1. Structure of the metal-thiosemicarbazone complex: a) General complex structure; b) Complex between 

Mn2+/Ni2+ and 3-formylpyridine thiosemicarbazone [22] 
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A data set of the values logβ11 of complexes between metal ions and the ligand thiosemicarbazone were 

taken from the literature on Table 1. 

Table 1. Complexes of metal ions and thiosemicarbazone and stability constant 

Ord 
Thiosemicarbazone 

Metal ions logβ11 Ref. 
R1 R2 R3 R4 

1 H H H -C7H7O3 Cu(II) 5.000 [23] 

2 H H H -C13H16NO3 Cu(II) 17.540 [24] 

3 H H H -C13H16NO3 Fe(III) 19.480 [24] 

4 H H H -C8H9O3 Cd(II) 5.544 [25] 

5 H H H -C6H3OHOCH3 Mo(VI) 6.5514 [26] 

6 CH3 -CH3 -C5H4N -C5H4N Fe(III) 7.060 [27] 

7 H H H -C14H12N Cd(II) 5.860 [28] 

8 H H H -C4H3O Cu(II) 14.670 [29] 

9 H -C6H5 H -C9H6NO Cu(II) 15.650 [29] 

10 H H H - C5H4N Zn(II) 7.300 [29] 

11 H -CH3 -CH3 H Ag(I) 14.500 [30] 

12 H H H -C7H7O3 Ag(I) 15.700 [30] 

13 H H H -C5H4N Cu(II) 17.200 [31,32] 

14 H H H -C6H3OHOCH3 Cd(II) 7.340 [33] 

15 H H H - C6H4OH Zn(II) 7.470 [33] 

16 H H H -CCH3NOH Mn(II) 5.000 [34] 

17 H H -C6H5 -C7H6NO Cu(II) 5.7482 [35] 

18 H H H -C6H3OHOCH3 Cu(II) 11.610 [36] 

19 H H H -C6H4NO2 La(III) 10.840 [37] 

20 H H H -C6H4NO2 Pr(III) 11.040 [37] 

21 H H H -C6H4NO2 Nd(III) 9.090 [37] 

22 H H -CH3 -C6H4OH Cd(II) 10.630 [38] 

23 H H -CH3 -C6H4OH Al(III) 11.240 [38] 

24 H H - -C9H8NO Cu(II) 5.491 [39] 

25 H H H C6H4NH2 Cu(II) 5.924 [39] 

2.2. Descriptors calculation 

Molecular descriptors can be defined as basic numerical characteristics related to chemical structures. 

So the complexes of metal-thiosemicarbazone were built structure molecular by BIOVIA Draw 2017 R2 

[40] and optimized by means of quantum mechanics on the MoPac2016 system [41]. The two and three-

dimensional of the molecular in the database were calculated by using the QSARIS system [15,42]. The 

quantum descriptors were calculated by using the semi-empirical quantum method with new version PM7 

and PM7/sparkle for lanthanides [20]. 

After computation, the proceeding of removing non-conforming variables for resulting receives a set of 

databases that includes observations with the logβ11 values and the variables as the calculated structural 

parameters. And we use this database to develop regression models and neural networks. 

2.3. Multivariate regression model development 

The three regression methods were used in this study, which are the ordinary least square regression, 

primary component regression and partial least square regression. It has the common characteristic of 

generating models that involve linear combines of explanatory variables. The difference between the three 

method lies on the way the correlation structures between the variables are handled. 

The ordinary least square regression (OLS) is used to model and predict the values of one or more 

dependent quantitative or qualitative variables by means of a linear combination of one or more explanatory 

quantitative and/or qualitative variables, without facing the constraints of ordinary least square regression 

on the number of variables versus the number of observations. 

In this case, the regression model with k explanatory variables writes 
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where Y is the dependent variable, β0, is the intercept of the model, Xj corresponds to the jth explanatory 

variable (with j = 1 to k), and  is the random error with expectation 0 and variance 2. 

In the case of k observations, the estimation of the predicted value of the dependent variable Y is given 

by expression (4) 

0

1

ˆ ·
k

j j

j

Y X 


   (4) 

The principal components regression (PCR) can be divided into three steps: firstly, it calculates a 

principal components analysis (PCA) on the table of the explanatory variables, secondly, it calculates an 

OLS regression on the selected components, then it computes the parameters of the model that correspond 

to the input variables. 

PCA allows to transform an X table with n observations described by variables into an S table with n 

scores described by q components, where q is lower or equal to p and such that (S’S) is invertible. An 

additional selection can be applied on the components so that only the r components that are the most 

correlated with the Y variable are kept for the OLS regression step. We then obtain the R table. 

The partial least square regression method is quick, efficient and optimal for a criterion based on 

covariance. It is recommended in cases where the number of variables is high, and where it is likely that 

the explanatory variables are correlated. 

The idea of PLS regression is created, starting from a table with n observations described by p variables, 

a set of h components with h < p. The method used to build the components differs from PCA, and presents 

the advantage of handling missing data. The determination of the number of components to keep is usually 

based on a criterion that involves a cross-validation. The equation of the PLS regression model writes 

 
1*' ' ' 'h h h h h h h h h h hY T C E XW C E XW P W C E


      (5) 

where Y is the matrix of the dependent variables, X is the matrix of the explanatory variables. Th, Ch, W*h, 

Wh and Ph, are the matrices generated by the PLS algorithm, and Eh is the matrix of the residuals. 

The matrix B of the regression coefficients of Y on X, with h components generated by the PLS 

regression algorithm is given by 

 
1

' 'h h h hB W P W C



 

(6) 

The three methods give the same results if the number of components obtained from the PCA (in PCR) 

or from the PLS regression is equal to the number of explanatory variables. The components obtained from 

the PLS regression are built so that they explain as well as possible Y, while the components of the PCR 

are built to describe X as well as possible. 

The models were screened by using the values R2
train and Q2

LOO. These were assessed by the same 

formula (6) 
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(7) 

where Yi, Ŷi, and Ȳ are the experimental, calculated and average value, respectively. 

Adjusted R² (R²adj) is the adjusted determination coefficient for the model. The value R²adj can be negative 

if the R² is near to zero. This coefficient is only calculated if the constant of the model has not been fixed 

by the user. R²adj is defined by 



         QSPR MODELLING OF STABILITY CONSTANTS OF METAL-THIOSEMICARBAZONE  189 

COMPLEXES USING MULTIVARIATE REGRESSION METHODS AND ARTIFICIAL NEURAL NETWORK 

 

© 2018 Trường Đại học Công nghiệp Thành phố Hồ Chí Minh 

 2 2 21
· 1

1
adj

k
R R R

N


  

  
(8) 

The R²adj is a correction to R², which takes into account the number of variables used in the model. The 

mean squared error (MSE) is defined by 
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
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
 

(9) 

The root mean square of the errors (RMSE) and the standard errors (SE) is the square root of the MSE. 

2.4. ANN model development 

Artificial neural network (ANN) is computing systems dubiously inspired by the biological neural 

networks that create animal brains. An ANN is based on a collection of connected units or nodes called 

artificial neurons which loosely model the neurons in a biological brain. Each connection, like the synapses 

in a biological brain, can transfer a signal from one artificial neuron to another. An artificial neuron that 

receives a signal can process it and then signal additional artificial neurons connected to it [43]. 

In common ANN implementations, the signal at a connection between artificial neurons are real number, 

and the output of each artificial neuron is computed by some non-linear function of the sum of its inputs. 

The connections between artificial neurons are called 'edges'. Artificial neurons and edges typically have a 

weight that adjusts as learning proceeds. The weight increases or decreases the strength of the signal at a 

connection. Artificial neurons may have a threshold such that the signal is only sent if the aggregate signal 

crosses that threshold. Typically, artificial neurons are aggregated into layers. Different layers may perform 

different kinds of transformations on their inputs. Signals travel from the first layer (the input layer), to the 

last layer (the output layer), possibly after traversing the layers multiple times. [44,45]. 

Neural network models can be viewed as simple mathematical models defining a function f: X → Y or 

a distribution over X or both X and Y. The functions applied at the nodes of the hidden layers are called 

activation functions. The activation function is a transformation of a linear combination of the X variables. 

The function applied at the response is a linear combination of continuous responses, or a logistic 

transformation for nominal or ordinal responses [44,45]. There are three transfer functions, namely sigmoid, 

hyperbolic tangent, and Gaussian transfers function. 

The main advantage of the neural network model is that it can model efficiently different response 

surfaces. Neural networks are very flexible models and have a tendency to overfit data. The main 

disadvantage of a neural network model is that the results are not easily interpretable, since there are 

intermediate layers rather than a direct path from the X variables to the Y variables, as in the case of regular 

regression [44,45].  

In this work, we used a typical feed-forward neural network with an error back-propagation learning 

algorithm to train it. This neural network style propagates information in the feed-forward direction using 

equation (10) [46] 

,

0

·
N

j i j i j

i

b f w a T


 
  

 


 

(10) 

where ai is the input factor, bj is the output factor, wij is the weight factor between two nodes, Tj is the 

internal threshold, and  is the transfer function. There are many transfer functions that are used in neural 

networks where hyperbolic tangent function is used in this study, a hyperbolic tangent learning algorithm 

is based on a generalized delta-rule accelerated by a momentum term. To increase the efficiency of the 

neural network, both the weight factors and the internal threshold values were adjusted using equations (11) 

and (12) [46] 

, , , , ,. . .new old old

i j i j k j k i i j

k

W w O W        (11) 

https://en.wikipedia.org/wiki/Artificial_neuron
https://en.wikipedia.org/wiki/Brain
https://en.wikipedia.org/wiki/Synapse
https://en.wikipedia.org/wiki/Brain
https://en.wikipedia.org/wiki/Weight_(mathematics)
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where  is the learning rate;  is the momentum coefficient; W is the previous weight factor change; T 

is the previous threshold value change; O is the output – the gradient-descent correction term; and k stands 

for the pattern. 

The performance of the trained network was verified by determining the error between the predicted 

value and the real value. All the data of the patterns were normalized to be less than 1 before training the 

neural network; the initial weight factors were randomly generated from –0.2 to 0.2, and the initial internal 

threshold values were set to zero [46,47]. 

3. RESULTS AND DISCUSSION 

3.1. Constructing models QSPROLS, QSPRPCR and QSPRPLS 

The construction of QSPROLS model was performed using back-elimination and the forward regression 

technique on the Regress system [48] and MS-EXCEL [13,15,49]. The construction of QSPRPLS and 

QSPRPCR models were effectuated using XLSTAT2016 [50] and MS-EXCEL [13,15,49]. The predictability 

of QSPR models was cross-validated by means of the leave-one-out method (LOO) using the statistic Q2
LOO. 

The multivariate regression models were constructed based on the training set and the test set, in which 

the portion of the test set is 20 %. The quality of models were evaluated by means of statistical values R2
train, 

R2
adj, Q2

LOO and Fstat (Fischer’s value). The QSPROLS models and the statistical values are shown in Table 2.  

Table 2. Selected model QSPROLS (k of 2 to 10) and statistical values 

k Variables SE R²train R²adj Q²LOO Fstat 

2 x1/x2 3.149 0.394 0.368 0.274 15.28537 

3 x1/x2/x3 2.716 0.559 0.530 0.429 19.42606 

4 x1/x2/x3/x4 2.586 0.609 0.574 0.486 17.52034 

5 x1/x2/x3/x4/x5 2.346 0.685 0.650 0.554 19.16658 

6 x1/x2/x3/x4/x5/x6 2.089 0.756 0.722 0.622 22.20887 

7 x1/x2/x3/x4/x5/x6/x7 1.875 0.808 0.776 0.685 25.27557 

8 x1/x2/x3/x4/x5/x6/x7/x8 1.586 0.866 0.840 0.782 33.12386 

9 x1/x2/x3/x4/x5/x6/x7/x8/x9 1.035 0.944 0.932 0.903 75.28873 

10 x1/x2/x3/x4/x5/x6/x7/x8/x9/x10 0.940 0.955 0.944 0.880 83.25919 

Notation of molecular descriptors 

C5 x1  SsssN x6 

xp9 x2  cosmo area x7 

electric energy x3  xp10 x8 

cosmo volume x4  core-core repulsion x9 

N4 x5  Hmax x10 

The best linear models QSPROLS were selected with the critical value  = 0.05; the important descriptors 

selected were based on the changes of the statistical parameters: standard error – SE, R2
train, R2

adj, Q2
LOO, 

and Fstat. The number of descriptors k was selected in range 2 to 10. The change of the amount of structural 

parameter leads to the change of the values SE, R2
train and Q2

LOO (Figure 2a). 

The selected variables included in the QSPROLS models (Table 2), showed that the R2
train, Q

2
LOO and Fstat 

values change and increase with k variables. When k values increase from 9 to 10, the corresponding 

statistical values add up negligibly and tend to decrease as Q2
LOO values, so choosing the k of 9 was 
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appropriated for the change trend. The variables from x1 to x9 were examined for the internal correlation 

between two or more variables based on the Pearson correlation coefficient matrix, which determines the 

significant correlation for log11. The correlation matrix is given in Table 3. 

a)  b)  

Figure 2. a) Change trend line of values SE, R2
train and Q2

LOO according to k descriptors; b) Correlation of 

experimental versus predicted values logβ11 of the test compounds using the QSPROLS model (with k = 9) 

Table 3. Pearson correlation matrix of variables in the QSPROLS model with k of 9 

Variables logβ11 x1 x2 x3 x4 x5 x6 x7 x8 x9 

logβ11 1 -0.517 0.251 -0.451 0.420 0.288 0.347 0.440 0.444 0.305 

x1 -0.517 1 0.041 -0.046 -0.233 -0.381 -0.274 -0.273 0.046 -0.076 

x2 0.251 0.041 1 -0.798 0.682 -0.133 0.640 0.704 0.799 0.989 

x3 -0.451 -0.046 -0.798 1 -0.868 0.132 -0.634 -0.853 -1.000 -0.792 

x4 0.420 -0.233 0.682 -0.868 1 0.095 0.550 0.994 0.876 0.723 

x5 0.288 -0.381 -0.133 0.132 0.095 1 0.159 0.076 -0.119 -0.087 

x6 0.347 -0.274 0.640 -0.634 0.550 0.159 1 0.557 0.635 0.638 

x7 0.440 -0.273 0.704 -0.853 0.994 0.076 0.557 1 0.861 0.752 

x8 0.444 0.046 0.799 -1.000 0.876 -0.119 0.635 0.861 1 0.794 

x9 0.305 -0.076 0.989 -0.792 0.723 -0.087 0.638 0.752 0.794 1 

Based on the results of Table 3, the correlation coefficients of 9 independent variables and a dependent 

variable logβ11 showed that the selected variables in the QSPROLS model with k of 9 were consistent and 

statistically acceptance and correlated t-student characterized the variables. The linear regression equation 

of the QSPROLS model with the statistical values follows 

logβ11 = -64.63  - 24.58 · x1 + 26.71 · x2 – 0.02334 · x3 – 0.355 · x4 + 25.47 · x5 - 

- 2.143 · x6 + 0.531 · x7 – 38.16 · x8 – 0.02505 · x9 

n = 50; R2
train = 0.944; Q2

LOO = 0.903; MSE = 1.035 

(13) 

Thus, the training dataset used to build the QSPROLS model satisfies the statistical requirements and 

good prediction. The predictability of the QSPROLS model is well suited to the group of complexes. The 

selected parameters in the model have no correlation between the selected variables. This modeling data 

will be used to develop the QSPRPCR and QSPRPLS models. 

Using a matrix of data with independent variables (k = 9) and a dependent variable log11, the QSPRPCR 

model was constructed from the results of the primary components analysis PCA, which showed that 9 

major components were statistically significant. The regression equation of the QSPRPCR model with the 

statistical values follows 

logβ11 = - 64.064 – 23.655 · x1 + 24.918 · x2 – 0.022 · x3 – 0.400 · x4 + 26.040 · x5 - 

- 1.840 · x6 + 0.574 · x7 – 36.476 · x8 – 0.024 · x9 

(14) 
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n = 50; R2
train = 0.934; R2

CV = 0.9485; MSE = 1.147; RMSE = 1.071 

Similarly from the results of the QSPRPCR modeling, proceed to construct a QSPRPLS model based on a 

data matrix with 9 independent variables. The quality of the QSPRPLS model was assessed based on 

statistical indicators with cumulative statistical values Q2
cum = 0.177; R2

Ycum = 0.934 and R2
Xcum = 0.999. In 

addition, based on the Variable Importance for the Projection (VIP) of the variables X affects logβ11 in the 

QSPRPLS model and the deviation value of the variables, from which the model variables are selected. So 

the QSPRPLS model gives the following results 

logβ11 = - 55.976 – 26.729 · x1 + 25.082 · x2 – 0.020 · x3 – 0.353 · x4 + 24.146 · x5 - 

- 2.277 · x6 + 0.504 · x7 – 36.044 · x8 – 0.021 · x9 

n = 50; R2
train = 0.934; R2

CV = 0.9658; MSE = 0.982; RMSE = 0.991 

(15) 

In the QSPR models, the R2
train value is the coefficient of multiplication correlation that multiplied by 

100 times with variance will explain the stability constant log11. The predictability of QSPR models is 

evaluated by R2
CV and Q2

LOO. The Fstat values reflect the variance ratio explained by the model and the 

variance from the regression error. The high Fstat value indicates that the model is statistically significant. 

The low MSE and RMSE values also indicate that the model is statistically significant. The predictive power 

of the model is shown by the value of the Q2
test for the non-original compounds group. 

3.2. Constructing model QSPRANN 

In addition to regression models, the QSPRANN model is also developed with the neural network 

technique on the Visual Gene Developer system [46] upon 9 variables of model QSPROLS. The architecture 

of the neural network consist of three layers I(9)-HL(12)-O(1) (Fig. 3); the input layer I(9) includes 9 

neurons that are C5, xp9, electric energy, cosmo volume, N4, SsssN, cosmo area, xp10 and core-core 

repulsion; the output layer O(1) includes 1 neuron that is the logβ11; the hidden layer includes 12 neurons.  

 

Figure 3. Architecture of neural network I(9)-HL(12)-O(1) 

The error back-propagation algorithm is used to train the network. The hyperbolic tangent transfer 

function sets on each node of the layer neural network; the training network parameters include the learning 

rate of 0.01; the momentum coefficient of 0.1. The results got the sum of error 0.000021 with 1,500,000 

loops and the regression coefficients of the training process are given in Table 4. 
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Table 4. Training quality of neural network QSPRANN I(9)-HL(12)-O(1) 

Data set Regression coefficient Slope y-intercept 

Training 0.9723 0.9659 0.187 

Validation 0.9731 0.9938 –0.1134 

As observation of eq. 13-15 and table 4, the neural model QSPRANN based on the architecture of neural 

network I(9)-HL(12)-O(1) adapts better than the built QSPR models. In fact, neural model QSPRANN 

exhibits a better fit and correlation between the predicted values and the experimental values than the 

QSPROLS, QSPRPLS and QSPRPCR models through Q2
test values (Table 5b and Fig. 4). 

3.3. Predictability of QSPR models 

The predictability of the QSPR models was carefully evaluated by means of the phasing-each-case 

technique. The predicted results received for 10 randomly chosen substances with the experimental values 

are described in Table 5a and 5b. 

The average absolute values of the relative error MARE (%) used to assess the overall error of the QSPR 

models are calculated according to formula (16) 

1

,%

,%

n

i

i

ARE

MARE
n




  where  11,exp 11,cal

11,exp

log log
,% 100

log
ARE

 




  (16) 

n is the number of test substances; β11,exp and β11,cal are the experimental and calculated stability constants. 

Table 5a. Stability constant of 10 test substances for validated externally 

Ord 
Thiosemicarbazone 

Metal Ions logβ11,exp Ref. 
R1 R2 R3 R4 

1 H -C6H5 -CH3 -C2H3NOH V(V) 5.3222 [51] 

2 -CH3 -CH3 -C5H4N -C5H4N Co(II) 11.970 [52] 

3 H H H -C13H16NO3 Co(II) 5.360 [53] 

4 H H H -CH=CHC6H5 Co(II) 5.099 [54] 

5 H H CH3 -CH=N-NHC6H5 Co(II) 9.900 [55] 

6 H H CH3 -CH=N-NHC6H5 Mn(II) 9.600 [55] 

7 H H H -C6H3OHOCH3 Cu(II) 11.980 [55] 

8 H -C2H5 H -C9H5NOH Cu(II) 19.100 [31,32] 

9 H H - -C9H8NO Zn(II) 7.654 [56] 

10 H H - -C9H8NO Cd(II) 6.611 [56] 

Table 5b. Stability constant of 10 test substances resulting from the QSPR models 

Ord logβ11,exp 
QSPROLS QSPRPLS QSPRPCR QSPRANN 

logβ11,cal ARE, % logβ11,cal ARE, % logβ11,cal ARE, % logβ11,cal ARE, % 

1 5.3222 4.322 18.798 4.718 11.352 3.807 28.473 5.296 0.497 

2 11.970 13.537 13.090 13.217 10.416 13.309 11.185 12.110 1.166 

3 5.360 3.808 28.954 4.226 21.156 3.999 25.393 4.831 9.867 

4 5.099 4.559 10.581 5.026 1.427 4.699 7.845 5.489 7.647 

5 9.900 8.836 10.744 8.642 12.710 9.301 6.054 10.801 9.101 
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6 9.600 9.779 1.866 9.374 2.358 10.211 6.368 8.003 16.637 

7 11.980 10.628 11.284 10.438 12.875 11.039 7.854 11.897 0.689 

8 19.100 14.591 23.607 14.742 22.814 15.482 18.942 15.958 16.451 

9 7.654 6.136 19.837 6.911 9.712 6.397 16.417 7.696 0.546 

10 6.611 5.066 23.363 5.643 14.635 5.209 21.213 5.242 20.706 

  MARE,% 16.212 MARE,% 11.945 MARE,% 14.975 MARE,% 8.331 

The single factor ANOVA method was used to evaluate the difference between the experimental and 

predictive logβ11 values from the QSPR models. Consequently, the differences between the experimental 

and calculated values of stability constants logβ11 resulting from the QSPR models are insignificant (F = 

0.043509 < F0.05 = 2.866266). Hence, the predictability of all QSPR models turns out to be in a good 

agreement with the experimental data. 

  

Figure 4. Correlation of experimental vs. predicted values of test set from the QSPR models 

As Table 5b, the MARE values of models QSPROLS, QSPRPCR, QSPRPLS and QSPRANN I(9)-HL(12)-

O(1) are 16.212%, 14.975%, 11.945% and  8.331%, respectively, indicating that model QSPRANN displays 

highest predictability next model QSPRPLS, QSPRPCR and QSPROLS. The logβ11 values resulting from model 

QSPRANN are closer to the experimental values. 

The results of analysis data in Table 5b are presented Fig. 4, it can show that the predictability of the 

models is very good. Whereby, neural model QSPRANN exhibits a best fit and correlation between the 

predicted values and the experimental values, next QSPRPLS and QSPRPCR models and the last QSPROLS 

models with Q2
test of 0.9334, 0.9033, 0.9058 and 0.8752, respectively. 

4. CONCLUSION 

This work has successfully built the quantitative structure and property relationship (QSPR) 

incorporating ordinary least square regression (QSPROLS), partial least square (QSPRPLS), primary 

component regression (QSPRPCR) and artificial neural network (QSPRANN). The QSPR models were 

constructed by using the dataset of structural descriptors resulting from the semi-empirical quantum 
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calculation and molecular mechanics. The QSPR models were cross-validated carefully using the leave-

one-out method upon statistical values R2
train, Q2

LOO, MARE, %, and one-way ANOVA method. The 

QSPRANN model I(9)-HL(12)-O(1) turns out to be satisfactory for actual applicability. The results from this 

study are in the service of designing new thiosemicarbazone derivatives that are helpful to find new 

complexes in the many fields such as analytical chemistry, pharmacy, and environment. 
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MÔ HÌNH HÓA QSPR HẰNG SỐ BỀN CỦA PHỨC GIỮA ION KIM LOẠI VÀ 

THIOSEMICARBAZONE SỬ DỤNG CÁC PHƯƠNG PHÁP HỒI QUY ĐA BIẾN 

VÀ MẠNG THẦN KINH NHÂN TẠO 

 

Tóm tắt. Trong nghiên cứu này, các mô hình quan hệ định lượng giữa cấu trúc-tính chất (QSPR) của các 

phức chất giữa ion kim loại và thiosemicarbazone được xây dựng bằng các phương pháp hồi quy đa biến 

và mạng thần kinh nhân tạo. Bộ mô tả phân tử, tham số hóa lý và các mô tả lượng tử của phức chất được 

tính toán từ cấu trúc phân tử và lượng tử theo phương pháp bán thực nghiệm PM7 và PM7/spakle. Mô hình 

QSPROLS tốt nhất được xây dựng dựa trên phương pháp hồi quy đa biến thường bao gồm 9 biến là C5, xp9, 

electric energy, cosmo volume, N4, SsssN, cosmo area, xp10 và core-core repulsion. Các mô hình QSPRPLS 

và QSPRPCR được phát triển tương ứng theo phương pháp bình phương tối thiểu riêng phần và phương pháp 

hồi quy thành phần chính từ 9 biến của mô hình QSPROLS. Chất lượng các mô hình được đánh giá qua các 

giá trị thống kê. Mô hình QSPROLS: R2
train = 0,944; Q2

LOO = 0,903; MSE = 1,035. Mô hình QSPRPLS: R2
train 

= 0,929; R2
CV = 0,938; MSE = 1,115. Mô hình QSPRPCR: R2

train = 0,934, R2
CV = 0,9485; MSE = 1,147. Mô 

hình mạng thần kinh QSPRANN với cấu trúc I(9)-HL(12)-O(1) cũng được xây dựng từ các biến đầu vào của 

mô hình QSPROLS với các giá trị thống kê R2
train = 0,9723 và R2

CV = 0,9731. Các mô hình QSPR này cũng 

được đánh giá ngoại và cho khả năng dự đoán phù hợp với thực nghiệm. 

Từ khóa: QSPROLS, QSPRPLS, QSPRPCR, QSPRANN, hằng số bền logβ11, thiosemicarbazone. 
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