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Abstract. Short term load forecasting is one of the fundamental parts of the electric system. Among
exponential smoothing methods, the Holt-Winters method is widely used to forecast the short-term load
since it is easy and simple to use, and it has high ability to adapt to the forecast of different time horizons.
This paper presents a new approach by combining Holt-Winters and Walk-Forward Validation
methodology to forecast the maximum power demand for Ho Chi Minh City, Vietham. The data is divided
into the training and test sets in many cases. The forecast accuracy of the mean absolute error (MAE) and
the mean absolute percentage error (MAPE) are used to analyze the characteristic of forecast for each day
of the week.
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1 INTRODUCTION

Load forecasting is an important part of electric power system, including the generation, transmission,
distribution and retail of electricity. Depending on different forecast horizons and resolutions, load forecast
problems can be divided into 3 groups: long-term, mid-term, and short-term. Long-term forecasts of the
peak load are necessary for capacity planning and maintenance scheduling. Mid-term demand forecasts are
applied for power system operation and planning. Short-term load forecasts are required for the control and
scheduling of power systems [1-5].

There are several ways used for short-term load forecasting, for that the exponential smoothing method
is considered as one of the most popular approaches due to the simplicity to apply to yield forecasts for real
data with a level of accuracy comparable to that of alternative complex methods. The most general form of
exponential smoothing methods is named as Holt-Winters consisting of level, trend, and seasonal
components in the time series [6-15].

In order to apply Holt-Winters method, the common way is to split the data into training and test sets,
which are used to build the forecast model and to measure the accuracy of forecast values, respectively.
And it is easier to see that the training set and the forecast model is fixed during forecast operation. Unlike
the traditional way, the Walk-Forward Validation Methodology allows to retrain the forecasting model as
new data becomes available, and to get the best forecasts at each time step [16-17]. Furthermore, in the case
of applying the Holt-Winters method for short-term load forecasting, the results reported in literature are
mostly concentrated on the total forecast accuracy as values of MAE, MAPE for one week, a few weeks or
one month [6-15], while the forecast accuracy for each day of week has not considered yet. Obviously, the
load demands for days of a week are not the same, for instance, it could be highest on working days and
lowest on weekends. Thus, the accuracy for each day of a week is essential and its understanding will be
useful for in real load forecasting.

In the present work, the Holt-Winters method and Walk-Forward Validation are combined to evaluate
the accuracy of load forecasting for each day of a week based on the maximum power demand data of Ho
Chi Minh city. This paper will be organized as follows. Section 2 presents the basic theories including
Exponential smoothing method, Walk-Forward Validation Methodology and the forecast accuracy. Section
3 provides predictions and discussion. The conclusions are provided in Section 4.
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2 FORECASTING METHODS

2.1 Exponential smoothing method

Exponential smoothing method is one of the most promising forecasting strategies for time series with the
simplest form called as simple exponential smoothing or single exponential smoothing (SES). Then Holt
extended SES method allowing to forecast data based on a trend called Holt's linear method. After that Holt
and Winters continued to improve to get the well-known Holt-Winters method used for capturing
seasonality [18-19].
A. SES method

SES method is applied for non-seasonal and trend time series, the only component considered here is the
level €. The equations of SES method are given as follows [18-19]:

Feinie = lt
I, = o 1—a)l D
¢ = ay: +( a)li_q

B. Holt’s linear trend method
Holt’s linear trend method is suitable for non-seasonal data, which contains the trend by and the level I

components. The Holt’s linear trend method is expressed in the following equations [18-19]:

Fiynie = Lt + hb;
lp = aye + (1 —a)(le—q + be—y) 2
by = By — li—1) + (1= B)b—4

C. Holt-Winters method
Holt-Winters method is appropriate for data with trend and seasonal components. There are two basic
models for the Holt-Winter method [18-19]:

i. Additive Seasonal Model
Feyne = ly + hbe + St+h—m(k+1)
li=a:— se-m) + (L — @)Uy + be_y) 3)
by = By — li—1) + (1 = B)bs_4
Se =YW —li-1 = b)) + (L= ¥)Seem

This is called additive because the seasonal component is added to level and trend components.

ii. Multiplicative Seasonal Model
This is called multiplicative because seasonal component is multiplied by the total level and direction
components.

Feynie = (e + hbe) Stn-me+1)
b= a2+ (1 —a)(l—y + br_1)

St-m 4
be= B — L) + (1= Bbrs )
Se=Y {t + (1 —¥)St—m
lg—1=bt—q

where in equations (1), (2), (3), (4):

- hisstep-ahead forecast, h=1, 2, ...; a is the smoothing parameter.
- m is the frequency of the seasonality, for quarterly data m=4, for weekly data m=7, for monthly
data m=12, ...

- kisthe integer part of (h—1)/m

- a, P,y is the smoothing parameters.

- |y, by, st are the level, trend, and seasonal components.

- Y.is observed value and F is forecasting value at time t
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The Additive Seasonal Model and Multiplicative Seasonal Model give the same results in most cases.
The Multiplicative Seasonal Model is utilized in this paper.

2.2 Walk-Forward Validation Methodology

In load forecasting practice, it is better to retrain the forecasting model as new data becomes available. The
Walk Forward Validation methodology gives the load forecasting model with the best opportunity to make
good forecasts at each time step. The sequential operation of the Walk Forward Validation methodology is
shown in Table 1 below. Firstly, using the history data (Weeks) for training, the forecasting model makes
a load forecasting for the next week (Weekl) and then stored or evaluated against the known value.
Continuously, the training data is expanded to include the know value (Weeks + Week1), the forecasting
model is updated and the next week is forecasted (Week2). The process is repeated to the end [16-17].

Table 1: The rolling of data in the Walk Forward Validation methodology.

History data Predictive data
[Weeks] Week1l
[Weeks + Week1 ] Week2
[Weeks + Weekl + Week2] Week3

2.3 The forecast accuracy

To measure the accuracy of the forecasting data, the criteria Mean Absolute Error (MAE) and Mean
Absolute Percentage Error (MAPE) have been chosen. The equations of MAE and MAPE are given by
[7,8,10]:
1
MAE = —-¥iLqlY; — Fi )
1 Yi—F;
MAPE = 137, |Y—| (6)
where:
- Yijis the actual observed values
- Fiis the forecasting values
- nisthe number of observed values

2.4 The framework for Walk-Forward Validation Methodology based on Holt-Winters
method

The framework for Walk-Forward Validation Methodology based on Holt-Winters method is shown in
Figure 1. Firstly, the data is split into history data [Weeks] and testing data [Week1, Week 2, ..., Weekn].
The history data was used in training process of HW method and forecast the values for the first week
[Week1]. Then the obtained data of the week 1 is added into the history data, and therefore the history data
now includes Weeks + Week 1 values. Next, the training process of HW method is performed again to
forecast the values for the second week [Week2]. The process is sequentially repeated by n steps, where
the n week of testing values is added into history data, and therefore we have the forecast value of n
Week. Finally, the forecasting accuracy (MAPE, MAE) for each day of a week is calculated based on the
forecasting values and the testing values.
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Figure 1: The framework for Walk-Forward Validation Methodology based on Holt-Winters method

3 PREDICTION RESULTS & DISCUSSION
3.1  Data description

Ho Chi Minh City is the largest City in Vietnam, and is also one of Vietnam's most important economic,
centers. With a population of over 10 million people and a concentration of industrial clusters, the electricity
demand for Ho Chi Minh City is extremely necessary and important. In the paper, we use the data of
maximum power demand (Pmax) of Ho Chi Minh City. The dataset starts from Monday, January 10, 2011
and ends on Sunday, December 30, 2018. The dataset consists of 8 years, 52 weeks per year and 7 days per
week, including 8 x 52 x 7 = 2912 days. A typical week starts from Monday to Sunday. Table 2 below

shows the value of dataset for the first week and the last week.

Table 2: The first week and last week of max Power demand in Ho Chi Minh city

Day of week Date Pmax (MW) Day of week Date Pmax (MW)
2 1/10/11 2260.37
3 1/11/11 2247.6 2 12/24/18 3695.2
4 1/12/11 2241.3 3 12/25/18 3675.1
5 1/13/11 2227.45 4 12/26/18 3646
6 1/14/11 2246.1 5 12/27/18 3636.7
7 1/15/11 2145.06 6 12/28/18 3494.1
CN 1/16/11 1709.45 7 12/29/18 3387.9
CN 12/30/18 2564.2

Figures 2-5 below show the plotting of dataset in 8 years, the last year, the last month and the last week of

dataset, respectively. In Figures 2 and 3, there are some values that dramatically decrease, corresponding

to the Luna New Year time. Figure 4 clearly indicates that the data have seasonality with the period of 7

days. It is obviously seen that the Pmax Will decrease on weekends (Saturday and Sunday).
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Figure 2: The data from 2011-2018.
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Figure 3: The last year’s data
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Figure 4: The last month’s data.
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Figure 5: The last week’s data.

Figure 6 shows the decomposing analysis results for the last year with the train, seasonal and residual
components of the observed data. Figure 6 clearly shows that the data have seasonal with period of 7 days.
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Figure 6: decomposing analysis for components of the last year.

3.2 Results and Discussion

In the paper, we use the data of max power (Pmax) of Ho Chi Minh city as described above to analyze the
characteristics of forecasting’s error for days of a week. The Walk Forward Validation methodology is
applied to make sure that the training data is updated with available data from test set after one week ahead
forecast step. The load data are split into training set and test set in several cases as shown in Table 3 below:
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Table 3: The training and testing set data.

Training set (days) Test set (days)
7*52*7 1*52*7
6*52*7 2*%52*7
5*52*7 3*52*7
4*52*7 4*52*7
3*52*7 5*52*7
2*52*7 6*52*7
1*52*7 7*52*7

Table 4 shows the MAE values in case of the test time from 1 year (1 x 52 x 7 = 364 days) to 7 years (7 X
52 x 7 = 2548 days) for each day of a week along with the average value.

Table 4: MAE values for day of the week and the average value

Test set MAE (MW)

(days) Mon Tue Wed Thu Fri Sat Sun Ave
1*52%7 156.7 148.8 181.5 181.6 | 205.7 222.1 1875 | 1834
2%52*7 147.7 158.2 176.2 190.4 198.9 229.5 177.7 | 1827
3*52%7 140.2 152.7 170.0 179.4 198.3 230.6 169.8 | 177.3
4*52*7 129.9 150.0 168.3 178.1 198.8 216.9 162.7 | 1721
5*52%7 124.2 145.2 167.4 176.2 191.1 205.1 150.7 | 165.7
6*52*7 119.6 140.6 162.4 167.2 182.4 192.3 1434 | 158.3
7*52%7 117.6 139.3 155.7 162.0 176.2 185.6 141.2 | 153.9

Table 5 shows the MAPE values in case of the test time from 1 year (1 x 52 x 7 = 364 days) to 7 years (7 X
52 x 7 = 2548 days) for each day of a week along with the average value.

Table 5: MAPE values for days of week and the average value

Test set MAPE (%)

(days) Mon Tue Wed Thu Fri Sat Sun Ave
1%52*7 5.5 4.7 5.6 5.6 6.5 7.2 7.3 6.1
2*52%7 5.0 5.0 5.5 6.0 6.4 7.8 7.2 6.1
3*52*7 4.8 4.9 5.4 5.8 6.6 8.1 7.0 6.1
4*52%7 45 5.0 5.6 6.0 7.0 7.8 6.8 6.1
5*52%7 45 5.0 5.9 6.4 7.0 7.6 6.5 6.1
6*52*7 4.4 5.0 5.9 6.1 6.8 7.3 6.4 6.0
7*52%7 45 5.2 5.8 6.1 6.7 7.2 6.5 6.0

Figure 7 presents the results in case of the test time for 1 years, 1 x 52 x 7 = 364 days. Figure (7a) shows
the testing and forecasting values. Figures 7b and 7c show MAE and MAPE values of Monday, Tuesday,
Wednesday, Thursday, Friday, Saturday and Sunday, respectively.
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Figure 7: The results in case of n_test = 1 x 52 x 7 days.

Figures 8 - 13 show the results in case of the test time from 2 years (2 x 52 x 7 = 728 days) to 7 years (7 x
52 x 7 = 2548 days), respectively.
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Figure 8: The results in case of n_test =2 x 52 x 7 days.
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Figure 9: The results in case of n_test = 3 x 52 x 7 days.
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Figure 10: The results in case of n_test =4 x 52 x 7 days.
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Figure 11: The results in case of n_test = 5 x 52 x 7 days.
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Figure 12: The results in case of n_test = 6 x 52 x 7 days.
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Figure 13: The results in case of n_test = 7 x 52 x 7 days.

Analyzing the Tables 4, 5 and Figures 7 — 13 indicates that:

- By applying Walk-Forward Validation Methodology to forecast the Pmax value for one week ahead,
the errors of forecasting are small. Especially, the average value of MAPE was obtained in the
region of 6%. In this regard, the proposed method demonstrated by itself as a reliable forecasting
tool.

- Curves of MAE and MAPE for each day of a week show an increasing trend from Monday to
Saturday and an opposite trend (decreasing) on Sunday.

- The errors (MAE and MAPE) observed for Sunday, Tuesday and Wednesday are smaller than that
for Thursday, Friday and Saturday. This means that the first three days are easier to forecast, while
next three days are difficult to forecast.

4 CONCLUSIONS

In this paper, the combination of Holt-Winters method and Walk-Forward Validation methodology has
been utilized to analyze for the Ho Chi Minh City maximum power data. The load forecasting errors of the
mean absolute error (MAE) and the mean absolute percentage error (MAPE) are small, proving the high
reliability of the proposed method. The analysis of the accuracy of load forecasting values for each day of
a week indicated that MAE and MAPE increased from Monday to Saturday and decreased on Sunday. The
obtained results can be useful for real load forecasting.
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PHAN TiCH PQ CHINH XAC DU BAO PHU TAI PIEN CHO KHU VUC
THANH PHO HO CHI MINH

Tém tiat. Dy bao phu tai ngdn han la mot trong nhitng thanh phin co ban trong van hanh hé théng dién.
Cac phuong phap dy bao san bang ham mii, ma trong d6 dac biét la phuong phap Holt-Winters dugc str
dung rong rai cho dy bao phu tai ngén han, bai vi chiing dé dang, don gian khi st dung, ciing nhur c6 kha
nang thich tng cao dé du bao cho cac khoang thoi gian khac nhau. Bai bao nay giéi thiéu phuong phap
Holt-Winters két hop véi phuong phap Walk-Forward Validation dé du bao nhu cau phu tai cuc dai cho
khu vurc thanh ph HO Chi Minh, Viét Nam. Dix liéu dugc chia thanh cac tap huan luyén va kiém tra trong
nhiéu trudng hop. Do chinh xac cua du bao MAE va MAPE dugc st dung dé phan tich dic tinh du bao cho
C4C ngay trong tuan.

Tir khéa. Holt- Winters, Dy bao phy tai ngan han, Walk-Forward Validation, D chinh xac du bao.
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