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Abstract. The underactuated system demonstrates significant coupling and highly nonlinear dynamics, 

posing challenges for precise control. This paper introduces an adaptive control approach for the 

underactuated rotary inverted pendulum (RIP) system. The objective is to enable the manipulator arm to 

track a desired trajectory and to maintain the pendulum in an upright position concurrently. The proposed 

method employs two neural networks: the first focuses on tracking the desired trajectory of the manipulator 

arm, while the second stabilizes the pendulum in its upright position. Stabilize the system using Lyapunov 

theory. To validate the effectiveness of the proposed control strategy, experiments are conducted using the 

NI-PCI 6221 data acquisition card with the RIP system. Both simulation and experimental results 

underscore the robustness of the proposed control method against system uncertainties and external 

disturbances, achieving stable operational performance. 

Keywords. Adaptive neural control, underactuated system, rotary inverted pendulum 

1 INTRODUCTION 

An underactuated mechanical system (UMS) is a system that has more degrees of freedom (DOF) to 

be controlled than the number of independently controlled actuators exerting force or torque onto the 

system. A UMS offers many advantages including increased operational capacity (e.g., more degrees of 

freedom) without the need for additional hardware, and energy efficiency that are very attractive for 

unmanned aerial and underwater vehicles with limited resources and energy storage. Specifically, a UMS 

can offer a system design that costs and weighs significantly less without losing or reducing the 

configuration space. Although the modeling, formulation and control theory of UMS have been studied to 

a great extent in the last decade, the control of a UMS in practical applications including aerial and 

underwater vehicles remains a nontrivial task. Very interesting reviews and books have been published on 

this topic to emphasize the importance and applications of the UMS [1], [2], [3]. The condition of 

underactuation in mechanics, robotics, mechatronics, or dynamical systems refers to a system with more 

degrees of freedom (number of independent variables that define the system configuration) than actuators 

(input variables) to be controlled. This restriction implies that some of the configuration variables of the 

system cannot be directly commanded, which highly complicates the design of control algorithms.  

The problem of finding an effective control law for an underactuated nonlinear system with fewer 

actuators than the number of degrees of freedom to control has attracted increasing attention because of its 

special properties. Systems with fewer actuators than degrees of freedom appear more and more in 

applications [4], such as underactuated UAVs [5], underactuated flexible joint robots [6], wheeled-bipedal 

robots [7], and underactuated AUVs [8]. In the presence of an actuator-free joint and a non-actuated free 

joint, it is not possible for conventional control to control the desired outputs well. Therefore, this system 

cannot follow the set signal arbitrarily.  

To solve the problem, the classical linear control approaches are designed. For example, S.E. Oltean 

[9] proposed fuzzy-PD controllers for swing-up control and stability for the rotary inverted pendulum (RIP). 

Yang et al. [10] introduced a hybrid pole-placement controller and proportional–integral–derivative (PID) 

or fractional-order PID (FOPID) to simultaneously track the control and stabilization of the RIP system. 

Mathew et al. [11] developed the linear quadratic regulator (LQR) control for the RIP system. Nguyen et 

al. [12] proposed a hybrid control between the feedback linearization-based energy control methods. 

However, the above controllers have weaknesses such as the exact physical parameters are not known, or 

the mathematical model is not accurate, leading to the design of the controller being extremely difficult. 

Moreover, the control quality will not be good in different operating conditions and the stability of the 

system cannot be guaranteed in the presence of system uncertainties and disturbances. 
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To overcome the drawbacks of classical control, a hybrid linear control with modern control techniques 

such as sliding mode control (SMC), and fuzzy logic control (FLC) are considered. Hazem et al. [13] 

proposed a fuzzy-based LQR for stability control of a double-link RIP system. Bekkar et al. [14] proposed 

an online tuning LQR based on FLC for balancing and tracking control of the RIP system. In which, FLC 

was used to adjust the weighting matrices Q and R of LQR. However, the stability of FLC is difficult to 

confirm based on Lyapunov law. Therefore, Nguyen et al. [15] proposed a hybrid fuzzy-LQR and SMC for 

the swing-up and balancing control of the Pendubot system. In which, the SMC scheme was used for swing 

up and fuzzy-based LQR was applied for tracking and balancing control. Nagarajan et al. [16] proposed a 

hybrid PID and SMC control for the RIP system, in which the PID and SMC parameters were optimized 

by an improved whale optimization algorithm (WOA). Chawla et al. [17] introduced a combination of LQR 

and SMC for the robust control of the RIP system, where LQR for optimal performance and SMC for robust 

control. The strength of approaches is based on SMC and FLC which are designed based on the system 

dynamics without linearization and the stability of the system can be guaranteed. However, the control 

parameters of these approaches are not adaptive or self-adaptive in different operating condition or external 

disturbacnes. Furthermore, due to the sliding control characteristic, there is chattering phenomenon 

affecting the hardware of RIP system. 

Recently, self-learning and adaptive control have received a lot of research attention. For example, 

Yang et al. [18] designed a swing-up strategy by using trajectory planning and the inertia effect. The hybrid 

adaptive neural network and linear matrix inequation control were designed for balancing and stabilization. 

Bhourji et al. [19] proposed reinforcement learning (RL) control based on proximal deterministic policy 

gradient to control the RIP system. Dao et al. [20] proposed an adaptive integral sliding-mode control using 

a reinforcement learning-based adaptive dynamic programming (ADP) strategy for the pendulum system 

to improve the tracking control quality. Sousy et al. [21] proposed an adaptive super-twisting PID-SMC 

controller for the stabilization of the RIP system. In which, a super-twisting PID-SMC component was used 

for stability control and an adaptive control was used to approximate the uncertain bounds of disturbances. 

Junior et al. [22] designed the model reference control-based recurrent paraconsistent neural network 

(RPNN) for tracking the trajectory of RIP system. Nghi et al. [23] proposed a combined LQR and online 

radial basis function neural network (NN) for stabilizing of RIP system. In which, RBFNN was used to 

cancel the systematic deviation and external disturbances. Saleem et al. [24] designed a stable online gain-

adjustment mechanism via state-error-dependent nonlinear-scaling functions to self-tun the coefficients of 

LQR. Hazem et al. [25] introduced novel LQR gains tuned by using radial basis neuro-fuzzy architecture 

for RIP system. Zeghlache et al. [26] developed an adaptive fuzzy fast terminal sliding mode control for 

the pendulum system. In which, fast terminal sliding mode control was designed to guarantee faults, 

uncertainties compensation, and chattering phenomenon reduction. The common point of these studies is 

to propose a classical SMC scheme to ensure stability and use NN/FLC model for adaptive control to cope 

with the system uncertainties. 

In this paper, an adaptive control is proposed to control RIP system. In which, the first neural network 

focuses on tracking a desired trajectory for the manipulator arm, while the second one stabilizes the 

pendulum at its upright position.  

The main contributions of this study are as follows, 

(1) The proposed control method is a combination of linear feedback and neural network adaptation, 

although not a new control method for MIMO nonlinear system, but the approach for the 

underactuated nonlinear systems is to propose a tracking error filter function that is different from 

the previous indirect adaptive control methods for full-order systems and adaptive sliding control. 

Thanks to the tracking error filter function proposed here, the matrix calculation with a non-square 

matrix due to lack of order is avoided, which is difficult to calculate (must go through the 

calculation of the pseudo-inverse matrix). This control method also avoids the oscillation of the 

control signal, the chattering phenomenon of the sliding control method. 

(2) Lyapunov stability analysis derives update laws for the two neural networks, enabling 

simultaneous stabilization of arm orientation and pendulum position 

(3) Simulation and experimental results are tested to prove the effectiveness of the proposed 

controller. 
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The rest of the paper is as follows. Section 2 shows the system dynamics and problem formulation. 

Section 3 designs the proposed controller and stability analysis. Section 4 presents the simulation results 

and discussion. Section 4 also presents an experimental configuration to test the effectiveness of the 

proposed approach. Finally, the conclusions are summarised in section 5. 

2 SYSTEM DYNAMICS AND FORMULATION 

2.1 System dynamic 

The diagram and coordinates of the RIP system are described in Fig.1. The parameter notations of  RIP 

system are described in Table 1. 

zo

yo

θ >0 CCW

α
Lp/2

Rotary arm

Ja

Pendulum

Jp, m

La

 
Fig.1. Schematic diagram of the RIP system 

 

Table 1. Parameter notations of  RIP system 

No. Parameters 
Ja Inertia of the arm 

La Total length of the arm 
m Mass of the pendulum 

Lp/2 Distance to the center of gravity of the pendulum 
Jp Inertia of the pendulum around its center of gravity 
𝑞1 Rotational angle of the arm 
𝑞2 Rotational angle of the pendulum 
u Input torque applied on the arm 

 

The dynamic model of the Rotary inverted pendulum can be written as, 

𝑀(𝑞). 𝑞̈ + 𝑉(𝑞, 𝑞̇). 𝑞̇ + 𝐺(𝑞) =  𝜏 (1) 
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In which,  

𝑞 = [ 
𝑞1
𝑞2
 ] = [ 

𝜃
𝛼
 ]; 𝑀(𝑞) = [

𝑃1 + 𝑃2𝑠𝑖𝑛
2𝛼 𝑃3𝑐𝑜𝑠𝛼

𝑃3𝑐𝑜𝑠𝛼 𝑃4
]  

𝑉(𝑞, 𝑞̇) = [

1

2
𝑃2𝑞̇2 sin(2𝑞2) −𝑃4𝑞̇2𝑠𝑖𝑛(𝑞2) +

1

2
𝑃2𝑞̇1sin (2𝑞2)

−
1

2
𝑃2𝑞̇1 sin(2𝑞2) 0

]                

𝐺(𝑞) = [
0

−𝑃5𝑠𝑖𝑛𝛼
] ;  𝑓𝑣(𝑞̇) =  [

𝑃6𝑞̇1
𝑃7𝑞̇2

] ;  𝜏 =  [
𝑢
0
] 

𝑃1 = 𝐽𝑎 +𝑚𝑙𝑎
2;  𝑃2 =  𝑚𝑙𝑝

2;   𝑃3 = 𝑚𝑙𝑎𝑙𝑝;   𝑃4 = 𝐽𝑝 +𝑚𝑙𝑝
2;  𝑃5 =  𝑚𝑔𝑙𝑝; 𝑃6 = 𝑏𝑎;  𝑃7 = 𝑏𝑝 

2.2 Problem Formulation 

Kinetic equations of state are as follows, 

𝑞̇1 = 𝑞3  (2) 

𝑞̇2 = 𝑞4  (3) 

𝑞̇3 = 𝑓1 + 𝑔1𝑢 (4) 

𝑞̇4 = 𝑓2 + 𝑔2𝑢 (5) 

We denotes as, 

𝑓1 =
1

𝑑𝑒𝑡(𝑀)
[𝑀22𝐻1 −𝑀12. 𝐻2] (6)             

𝑓2 =
1

𝑑𝑒𝑡(𝑀)
[𝑀11𝐻2 −𝑀21. 𝐻1] (7) 

𝐻1 = −𝐶11𝑞̇1 − 𝐶12𝑞̇2 − 𝑃6𝑞̇1 (8) 

𝐻2 = −𝐶21𝑞̇1 − 𝐶22𝑞̇2 − 𝑃7𝑞̇2 − 𝑃5 𝑠𝑖𝑛( 𝑞2) (9) 

𝑔1 =
𝑀22

𝑑𝑒𝑡(𝑀)
 , 𝑔2 =

−𝑀21

𝑑𝑒𝑡(𝑀)
 (10) 

Here, it is important to define a proper function of the error to gain the control goal as, 

𝑒 =  [
𝑒1
𝑒2
] =  [

𝑞𝑑1 − 𝑞1 
𝑞𝑑2 − 𝑞2

] =  [
𝑞𝑑1 − 𝑞1 
− 𝑞2

]  ∈  ℛ2 (11) 

Taking the derivative of Eq.11, we have, 

𝑒̇1 = 𝑞̇𝑑1 − 𝑞̇1 (12) 

𝑒̇2 = − 𝑞̇2 (13) 

𝑒̈1 = 𝑞̈𝑑1 − 𝑓1 − 𝑔1𝑢 (14) 

𝑒̈2 = − 𝑓2 − 𝑔2𝑢 (15) 

Assumption 1. The desired trajectory of the arm of RIP system is that the signal 𝑞𝑑1 is a smooth, second-

differentiable, and bounded function. 
‖𝑞𝑑1(𝑡)‖, ‖𝑞̇𝑑1(𝑡)‖, ‖𝑞̈𝑑1(𝑡)‖  ≤  𝛿 (16) 

In which, delta is a positive constant. 

Since the system is a underactuated mechanical system (two joints but only one action), We propose an 

output function y(t)  ∈ R as a filtered tracking error given by 

𝑦(𝑡) =  𝑘1𝑒1 + 𝑘2𝑒2 + 𝑒̇1 + 𝑒̇2 (17) 

Where 𝑘1, 𝑘2 is a positive constant chosen such that the matrix H of the error system is Huwizt.  

According to [27], the method of choosing 𝑘1, 𝑘2 so that the following conditions are satisfied, the 

system will ensure the stability of the uniformly ultimately bounded (UUB). 

{
 

 
𝑃3 > 𝑃4

0 < 𝑘1 <
𝑃5

𝑃7

𝑘2 >
𝑘1𝑃4+𝑃7

𝑃3
+
𝑘1𝑃5(𝑃3−𝑃4)

𝑃3(𝑃5−𝑘1𝑃7)

 (18) 

Taking the derivative of Eq.18, we obtain, 

𝑦̇(𝑡) =  𝑘1𝑒̇1 + 𝑘2𝑒̇2 + 𝑒̈1 + 𝑒̈2    

        = 𝑘1𝑒̇1 + 𝑘2𝑒̇2 + 𝑞̈𝑑1 − 𝑓1 − 𝑔1𝑢 − 𝑓2 − 𝑔2𝑢  

        = 𝑘1𝑒̇1 + 𝑘2𝑒̇2 + 𝑞̈𝑑1 − (𝑓1+𝑓2) − (𝑔1 + 𝑔2)𝑢  

           = 𝑘1𝑒̇1 + 𝑘2𝑒̇2 + 𝑞̈𝑑1 − 𝐹 − 𝐺𝑢 (19) 

 Where, 𝐹 = 𝑓1+𝑓2, 𝐺 =  𝑔1 + 𝑔2  
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Remark 1. According to [27], for the case of RIP system, we have 

𝑔1 + 𝑔2 < 0, ∀|𝑞2| < 𝑎𝑟𝑐𝑐𝑜𝑠(
𝑃4

𝑃3
)                (19a) 

The inequality (19a) is satisfied for all time t ≥ 0. 

Theorem 1. Consider the RIP system (1) with the control law given by (20) 

𝑢 =
𝑘1𝑒̇1 + 𝑘2𝑒̇2 + 𝑞̈𝑑1 − 𝐹 + 𝑘3𝑦

𝐺
 

                    (20) 

Where 𝑘3 > 0, the tracking error 𝑒 = [𝑒1, 𝑒2]
𝑇 satisfies lim

𝑡→∞
𝑒 = 0. 

Proof. The Lyapunov function is selected as, 

𝑉 = 
1

2
𝑦2 (21) 

Differentiating V can be obtained, 

𝑉̇ = 𝑦𝑦̇ = 𝑦 (𝑘1𝑒̇1 + 𝑘2𝑒̇2 + 𝑞̈𝑑1 − 𝐹 − 𝐺𝑢) (22) 

 

Substituting (20) into (22), we can obtain, 

𝑉̇ = 𝑦 (𝑘1𝑒̇1 + 𝑘2𝑒̇2 + 𝑞̈𝑑1 − 𝐹 − 𝐺
𝑘1𝑒̇1 + 𝑘2𝑒̇2 + 𝑞̈𝑑1 − 𝐹 + 𝑘3𝑦

𝐺
) 

= 𝑦 (𝑘1𝑒̇1 + 𝑘2𝑒̇2 + 𝑞̈𝑑1 − 𝐹 − 𝑘1𝑒̇1 − 𝑘2𝑒̇2 − 𝑞̈𝑑1 + 𝐹 − 𝑘3𝑦) 
  

= −𝑘3𝑦
2  ≤ 0  (23) 

The proof is completed. 

3 DESIGNED THE ADAPTIVE NEURAL CONTROLLER  

In this section, the study focuses on designing a control system for balancing and tracking the trajectory 

of a RIP system using an adaptive neural control. Specifically, once the pendulum’s swing-up phase 

transitions into a control area that meets the constraint condition 𝑞2 as defined in Eq. (19a), the adaptive 

neural control mechanism is activated. A summary of the adaptive neural control block diagram is 

illustrated in Figure 2. 
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Fig. 2. The block diagram of the proposed controller for RIP system 

The details of the components in the block diagram of Figure 2 are designed as follows. When the system 

parameters are unknown, we do not have a description of F and G. We can approximate F and G functions 
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through a neural network as follows, 

𝐹 = 𝑊𝑓
𝑇𝜑(𝑉𝑓

𝑇𝑥) + 𝜀𝑓 (24) 

𝐺 = 𝑊𝑔
𝑇𝜑(𝑉𝑔

𝑇𝑥) + 𝜀𝑔 (25) 

Where, 𝜀𝑓 , 𝜀𝑔 are representing the approximate errors of F and G functions. x is an input of neuron 𝑥 =

 [𝑞1  𝑞2 𝑞̇1  𝑞̇2  1 ]
𝑇. 𝜑(. ) is a hidden layer activation function. The weighting vector 𝑉 = [𝑉𝑖𝑗] 𝑊 =

[𝑊1   𝑊2   ……𝑊𝑚]
𝑇, 𝑖 = 1 ÷ 𝑛, 𝑗 = 1 ÷𝑚. n is the number of neurons of the input layer and m is the 

number of hidden neurons. 

 

For simplicity, we can choose V as a matrix with randomly selected constant values in a range of [-1; 

1]. Therefore, when the system state signals are measured, we design the neural network model to estimate 

F and G as, 

𝐹̂ =  𝑊̂𝑓
𝑇𝜑(𝑉𝑓

𝑇𝑥)  (26) 

𝐺 = 𝑊̂𝑔
𝑇𝜑(𝑉𝑔

𝑇𝑥) (27) 

The estimated error is defined as, 

𝐹̃ = 𝐹 − 𝐹̂ ≈ 𝑊̃𝑓
𝑇𝜑(𝑉𝑓

𝑇𝑥) (28) 

𝐺̃ = 𝐺 − 𝐺 ≈  𝑊̃𝑔
𝑇𝜑(𝑉𝑔

𝑇𝑥) (29) 

𝑊̃𝑓 = 𝑊𝑓  −  𝑊̂𝑓 ;     𝑊̃𝑔 = 𝑊𝑔  −  𝑊̂𝑔 (30) 

The proposed neural network-based adaptive control law is given as, 

𝑢 =  
𝑘1𝑒̇1+ 𝑘2𝑒̇2+ 𝑞̈𝑑1−𝐹̂+ 𝑘3𝑦+ 𝑢𝑠

𝐺
 (31) 

Remark 2. For system (1) and Remark 1, there exist negative boundaries of G function. Without losing 

generality, we choose the boundary of the function G in the experiment as follows: 

{
𝐺(𝑡 + 1) = −1 𝑖𝑓 |𝐺(𝑡)| < −1  

𝐺̂(𝑡 + 1) = 𝐺(𝑡)    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒    
 

Theorem 2. Consider the RIP system (1) with the adaptive control law is given by (31), 𝑊̃𝑓 , 𝑊̃𝑔  will 

converge, according to the Barbalat lemma, y(t) will go to zero exponentially as t goes to ∞. 

Proof. The Lyapunov function is selected as, 

𝑉 = 
1

2
𝑦2 + 

1

2
𝑇𝑟(𝑊̃𝑓

𝑇𝐾𝑓
−1𝑊̃𝑓) + 

1

2
𝑇𝑟(𝑊̃𝑔

𝑇𝐾𝑔
−1𝑊̃𝑔) (32) 

Differentiating V can be obtained, 

𝑉̇ =  𝑦𝑦̇ +  𝑇𝑟 (𝑊̃𝑓
𝑇𝐾𝑓

−1𝑊̇̃𝑓) +  𝑇𝑟 (𝑊̃𝑔
𝑇𝐾𝑔

−1𝑊̇̃𝑔) (33) 

Substituting (19) into (33), we can obtain, 

𝑉̇ = 𝑦[𝑘1𝑒̇1 + 𝑘2𝑒̇2 + 𝑞̈𝑑1 − 𝐹 − 𝐺𝑢] + 𝑇𝑟 (𝑊̃𝑓
𝑇𝐾𝑓

−1𝑊̇̃𝑓) +  𝑇𝑟 (𝑊̃𝑔
𝑇𝐾𝑔

−1𝑊̇̃𝑔)  

    = 𝑦[𝑘1𝑒̇1 + 𝑘2𝑒̇2 + 𝑞̈𝑑1 − 𝐹 − (𝐺 + 𝐺̃)𝑢]   

           +𝑇𝑟 (𝑊̃𝑓
𝑇𝐾𝑓

−1𝑊̇̃𝑓) +  𝑇𝑟 (𝑊̃𝑔
𝑇𝐾𝑔

−1𝑊̇̃𝑔) (34) 

Substituting (31) into (34), we can obtain, 

𝑉̇ = 𝑦 [𝑘1𝑒̇1 + 𝑘2𝑒̇2 + 𝑞̈𝑑1 − 𝐹 − 𝐺 (
𝑘1𝑒̇1 + 𝑘2𝑒̇2 + 𝑞̈𝑑1 − 𝐹̂ + 𝑘3𝑦 + 𝑢𝑠

𝐺
) − 𝐺̃𝑢]  

+𝑇𝑟 (𝑊̃𝑓
𝑇𝐾𝑓

−1𝑊̇̃𝑓) +  𝑇𝑟 (𝑊̃𝑔
𝑇𝐾𝑔

−1𝑊̇̃𝑔) (35) 

Simplify (35), we get 

𝑉̇ = 𝑦(𝐹̂ − 𝐹 − 𝐺̃𝑢 − 𝑘3𝑦 − 𝑢𝑠) + 𝑇𝑟 (𝑊̃𝑓
𝑇𝐾𝑓

−1𝑊̇̃𝑓) +  𝑇𝑟 (𝑊̃𝑔
𝑇𝐾𝑔

−1𝑊̇̃𝑔)  

        =  −𝑘3𝑦
2 − 𝑦𝐹̃ − 𝑦𝐺̃𝑢 −  𝑇𝑟 (𝑊̃𝑓

𝑇𝐾𝑓
−1𝑊̇̂𝑓) −  𝑇𝑟 (𝑊̃𝑔

𝑇𝐾𝑔
−1𝑊̇̂𝑔) − 𝑦𝑢𝑠 (36) 

Substituting (28) and (29) into (36), we can obtain, 

𝑉̇ =  −𝑘3𝑦
2 − 𝑦𝑊̃𝑓

𝑇𝜑(𝑉𝑓
𝑇𝑥) − 𝑦𝑊̃𝑔

𝑇𝜑(𝑉𝑔
𝑇𝑥)𝑢 −  𝑇𝑟 (𝑊̃𝑓

𝑇𝐾𝑓
−1𝑊̇̂𝑓)  

         − 𝑇𝑟 (𝑊̃𝑔
𝑇𝐾𝑔

−1𝑊̇̂𝑔) − 𝑦𝑢𝑠 − 𝜀𝑓 − 𝜀𝑔𝑢  

    = −𝑘3𝑦
2 −  𝑇𝑟 [𝑊̃𝑓

𝑇 (𝑦𝜑(𝑉𝑓
𝑇𝑥) + 𝐾𝑓

−1𝑊̇̂𝑓)]  
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            −𝑇𝑟 [𝑊̃𝑔
𝑇 (𝑦𝜏𝜑(𝑉𝑓

𝑇𝑥) + 𝐾𝑔
−1𝑊̇̂𝑔)] − 𝑦𝑢𝑠 − 𝜀𝑓 − 𝜀𝑔𝑢 (37) 

The weights of neuron update rule and the error compensation signal are chosen as, 

𝑇𝑟 [𝑊̃𝑓
𝑇 (𝑦𝜑(𝑉𝑓

𝑇𝑥) + 𝐾𝑓
−1𝑊̇̂𝑓)] = 0 (38) 

𝑇𝑟 [𝑊̃𝑔
𝑇 (𝑦𝑢𝜑(𝑉𝑓

𝑇𝑥) + 𝐾𝑔
−1𝑊̇̂𝑔)] = 0 (39) 

−𝑦𝑢𝑠 − 𝜀𝑓 − 𝜀𝑔𝑢 = 0 (40) 

From (38), (39) and (40), we deduce 

𝑊̇̂𝑓 = −𝐾𝑓𝑦𝜑(𝑉𝑓
𝑇𝑥) (41) 

𝑊̇̂𝑔 = −𝐾𝑔 𝑦𝑢𝜑(𝑉𝑓
𝑇𝑥) (42) 

𝑢𝑠 = − 
1

𝑦
(𝜀𝑓 + 𝜀𝑔𝑢) (43) 

Substituting (38), (39) and (40) into (37), we can obtain, 

𝑉̇ = −𝑘3𝑦
2  ≤ 0, ∀𝑘3 > 0 (44) 

The proof is completed. 

4 RESULTS AND DISCUSSION 

4.1 Simulation results 

The simulation of RIP system has been conducted on MATLAB/Simulink with the following initial 

conditions. The dynamic parameters (P1, P2, P3, P4, P5, P6, P7) of RIP model [28] are (0.0619, 0.0149, 

0.0185, 0.0131, 0.5076, 0.0083, 0.0007), respectively. The control parameters are chosen as k1 = 1, k2 = 5, 

k3 = 18. Neural networks for estimating function F are chosen as Kf = -10, kw = 0.1, the number of hidden 

layer neurons of 10, the matrix Vf is randomly generated in the range [-1;1], and the activation function is 

tansig. Neural Networks for estimating function G are chosen as Kg = -2.5, kw = 0.35, the number of hidden 

layer neurons is 10, the matrix Vg is randomly generated in the range [-1;1], and the activation function is 

logsig. The simulink program of the proposed control for RIP system is described in Fig.3.  

 
Fig.3. Simulation diagram of the proposed adaptive controller 

Remark 3. The parameters k1, k2 were determined through trial and error. While the control laws (20) 

and (31) are derived using Lyapunov's method, ensuring system stability, these parameters may not 

represent the optimal control laws for all other underactuated systems. 

To verify the performance of the proposed controller, the trajectory references are used including case 

1 – sinusoidal signal and case 2 - sinusoidal signal with external disturbance. The results of case 1 are 

shown in Fig.4, Fig.5, and Fig.6. Fig.4 gives the trajectory tracking of 𝑞1(link 1 of RIP system), 𝑞2(link 2 

of RIP system), and the control input. We can see that link 1 of RIP system can track the desired sinusoidal 

signal in 1.6 (sec) and the pendulum (link 2 of RIP system) is close to the upright position (nearly zero). 
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Fig.4. Trajectory tracking of an adaptive controller in case 1 

 
Fig.5. The The estimated results of G function and the convergence of the weights neuron 
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Fig.6. The estimated results of the F function and the convergence of the weights neuron 

Fig.5 and Fig.6 show the estimated functions of F and G, and the convergence of the neuron weighting, 

respectively We can see that the weighs 𝑊𝑓 𝑎𝑛𝑑 𝑊𝑔 of neural networks will stable after 0.7 (sec) and 3.2 

(sec), respectively. This shows the strong adaptability of the proposed controller. 

To check the robustness of the controller, an external disturbance as a torque is applied to the pendulum 

for 0.5 (sec) (case 2) with measurement noise, and the controller performance is evaluated. The other 

variables with time are displayed in Fig.7.  

 
Fig.7. Trajectory tracking of an adaptive controller in case 2 

Fig.7 gives the trajectory tracking of 𝑞1(link 1 of RIP system), 𝑞2(link 2 of RIP system), and the control 

input. We can see that the system response is stable, and the output follows the input desired signal well, 

the network weights converge after 2 seconds. Although RIP parameters change or the noise affects the 

system, the output response also achieves the desired result.  

4.2 Experimental results 

The experimental RIP system is configured in Fig.8. The diagram of data acquisition and control RIP 

system with Matlab/Simulink is programmed in Fig.9 and Fig.10. In which, PC is installed Matlab 2013b 

to implement control with Real-Time Windows Target. National Instrument PCI 6221 board (DAQ) is used 

to measure the angular of link 1 and link 2 of the RIP system and control the motor DC through the amplifier 

drive board. Minertia 27V/70W 2000RPM DC motor with encoder 240 pulses/rev is used. The angular 
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error and angular velocity when sampling at 100Hz ±0.00654 𝑟𝑎𝑑 và ±0.654 𝑟𝑎𝑑/𝑠, respectively. Motor 

amplifier drive control with load-bearing parameters is 300W (24V, 15A). Two Encoders 1000 pulses/rev 

are used to collect the angular link1 and link2 of RIP system. The control parameters are selected as folows, 

k1 = 2, k2 = 25, k3 = 75, Kf = -0.85, Kg = -0.65, kwf = 0.45, kwg = 0.5. The number of hidden layers for neural 

networks is 10.  

PCI 6221
Encoder

Encoder

Motor DC

Amplifier 

driver 
PC

Rotary 

Inverted 

Pendulum

 
Fig.8. Experimental RIP system configuration 

 
Fig.9. Diagram of data acquisition of RIP through two encoders with Matlab/Simulink 

 

 
Fig.10. Diagram of control RIP system with Matlab/Simulink 

Case 1. Control RIP system stable at the equilibrium point with external disturbance. Fig.11 to Fig.14 

show the trajectory tracking of 𝑞1(link 1 of RIP system), 𝑞2(link 2 of RIP system), the control input, and 

the convergence of the neuron weighting. 
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Fig.11. Stable link 1 response results at equilibrium with disturbance 

 
Fig.12.  Pendulum (link 2) response results at equilibrium with disturbance 

 
Fig.13. The system control signal is stable at the equilibrium point with disturbance 
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Fig.14.  Estimated F(q) and norm weights of neural networks 

With the designed network structure and adjusted learning coefficient, as shown in Fig.11 to Fig.14 in 

the first 20 (sec), the estimated neuron sets have not been the correct value of the system. Then, the values 

are approximated and the network output and carrier weights gradually update to a value for a stable system 

in about 8 (sec). At the times of 28 (sec), 52 (sec), 87 (sec), the system output was affected by external 

noise, the neural network responded well to the role and adjusted the control signal to respond to this change 

and make for a stable system. 

Case 2. Sinusoidal trajectory references with ω = 0.5 rad/s. Fig.15 to Fig.18 show the trajectory tracking 

of 𝑞1(link 1 of RIP system), 𝑞2(link 2 of RIP system), the control input, and the approximated values of the 

estimated neuron networks in this case 

 
Fig.15. Result of experimental response of manipulator (link 1), pendulum (link 2) and control signal in 

case 2 
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Fig.16.  Adaptive approximation of F and G functions in case 2 

As can be seen in Figs 15, 16, note that in the first 8 seconds, the system is operating in swing-up mode, 

moving the pendulum from the stable equilibrium position q2 at pi to the unstable equilibrium position q2 

in the domain that satisfies the condition (19a). At about 15 seconds,  we control the manipulator (arm) to 

follow the sine signal with a frequency of 0.5rad/s, the response of the system to follow the desired signal 

is quite good, although the experimental mechanical system is not of good quality due to being hand-made. 

The robot arm has tracked the desired sinusoidal signal and the pendulum is well balanced. The estimated 

values of the G and F functions ensure that the robot follows the set signal and the pendulum remains stable 

at the above equilibrium position.  

Case 3. Sinusoidal trajectory references with ω =1.5 rad/s. Fig.17 shows the trajectory tracking of 

𝑞1(link 1 of RIP system), 𝑞2(link 2 of RIP system), the control input, and the approximated values of the 

estimated neuron networks 

 
 

Fig.17. Result of the experimental response of manipulator (link 1), pendulum (link 2) and control signal 

in case 3 



ROBUST ADAPTIVE NEURAL TRACKING CONTROL FOR UNDERACTUATED NONLINEAR SYSTEMS... 

116 

 

  
Fig.18.  Adaptive approximation of F and G functions in case 3 

As can be seen in Figures 17, 18, note that during the first 10 seconds, the system operates in swing-up 

mode, moving the pendulum from the stable equilibrium position q2 to the unstable equilibrium position 

q2 in the region satisfying the condition (19a). After the successful Swing up, the adaptive neural control 

has been tracking the sinusoidal signal with a frequency of 1.5rad/s. The results show that the pendulum 

remains stable, tracking the reference signal but with a large error. 

In summary, the neural adaptive control achieves robustness, balanced control, and good tracking with 

a sinusoidal reference signal with a frequency change of less than 0.5 rad/2 in the presence of system 

uncertainty and external disturbances. Despite its potential, the proposed control method still faces 

limitations, including that we have not specified constraints for the change of the input signal. When the 

input signal changes with a large amplitude suddenly, the control signal (31) is not updated correctly, 

leading to system instability. In the control signal (31), there exists a control component 𝑢𝑠 (43) that must 

ensure the upper and lower bounds for the estimation error of the neural network. If this component is not 

properly guaranteed, the system will easily become unstable. 

5 CONCLUSION 

This paper showed the development of an adaptive neural network control scheme to control the rotary 

inverted pendulum (RIP) system with the manipulator (link 1) following the desired input signal and the 

pendulum (link 2) stabilizes at the equilibrium position. The controller was derived from the universal 

approximation property of neural networks, and weight adaptation laws were designed. The simulation 

results clearly indicate the effectiveness of the proposed control law in an uncertain nonlinear underactuated 

system. The controller simultaneously stabilizes the manipulator’s orientation and the angular position of 

the pendulum. The controller is able to provide robust, non-fluctuation performance in the presence of 

parametric uncertainty and external disturbances. The proposed adaptive algorithm has also been applied 

to the experimental RIP system via the DAQ 6221 NI board with Windows RealTime Target. Experimental 

results also show that the system response follows the desired signal when the kinematic parameters of the 

system are unknown and there is measurement noise affecting the system. Despite its potential, the proposed 

control method still has limitations, including the input signal constraints, and upper and lower bounds of 

the neural network estimation error, which may affect the control quality. These issues will be addressed in 

future works. 
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ĐIỀU KHIỂN NƠ-RON THÍCH NGHI BỀN VỮNG CHO HỆ PHI TUYẾN 

DƯỚI BẬC: NGHIÊN CỨU TRƯỜNG HỢP CON LẮC NGƯỢC QUAY 

NGUYỄN HOÀNG HIẾU, MAI THĂNG LONG, NGUYỄN NGỌC SƠN* 
1Khoa Công nghệ Điện tử, trường Đại học Công nghiệp Thành Phố Hồ Chí Minh, 

* Tác giả liên hệ: nguyenngocson@iuh.edu.vn 

 
Tóm tắt. Hệ thống bị thiếu điều khiển thể hiện sự tương tác mạnh mẽ và động lực phi tuyến cao, gây ra 

thách thức cho việc điều khiển chính xác. Bài báo này giới thiệu phương pháp điều khiển thích nghi cho hệ 

thống con lắc đảo chiều quay (RIP) bị thiếu điều khiển. Mục tiêu là cho cánh tay cơ khí theo dõi quỹ đạo 

mong muốn và đồng thời duy trì con lắc ở vị trí thẳng đứng. Phương pháp đề xuất sử dụng hai mạng nơ-

ron: mạng thứ nhất tập trung vào việc theo dõi quỹ đạo mong muốn của cánh tay cơ khí, trong khi mạng 

thứ hai ổn định con lắc ở vị trí thẳng đứng. Ổn định hệ thống bằng lý thuyết Lyapunov. Để xác thực hiệu 

quả của chiến lược điều khiển đề xuất, các thí nghiệm được thực hiện sử dụng thẻ thu thập dữ liệu NI-PCI 

6221 với hệ thống RIP. Cả kết quả mô phỏng và thực nghiệm đều nhấn mạnh tính mạnh mẽ của phương 

pháp điều khiển đề xuất trước các bất định của hệ thống và nhiễu bên ngoài, đạt được hiệu năng vận hành 

ổn định. 
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