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Abstract. The underactuated system demonstrates significant coupling and highly nonlinear dynamics,
posing challenges for precise control. This paper introduces an adaptive control approach for the
underactuated rotary inverted pendulum (RIP) system. The objective is to enable the manipulator arm to
track a desired trajectory and to maintain the pendulum in an upright position concurrently. The proposed
method employs two neural networks: the first focuses on tracking the desired trajectory of the manipulator
arm, while the second stabilizes the pendulum in its upright position. Stabilize the system using Lyapunov
theory. To validate the effectiveness of the proposed control strategy, experiments are conducted using the
NI-PCl 6221 data acquisition card with the RIP system. Both simulation and experimental results
underscore the robustness of the proposed control method against system uncertainties and external
disturbances, achieving stable operational performance.
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1 INTRODUCTION

An underactuated mechanical system (UMS) is a system that has more degrees of freedom (DOF) to
be controlled than the number of independently controlled actuators exerting force or torque onto the
system. A UMS offers many advantages including increased operational capacity (e.g., more degrees of
freedom) without the need for additional hardware, and energy efficiency that are very attractive for
unmanned aerial and underwater vehicles with limited resources and energy storage. Specifically, a UMS
can offer a system design that costs and weighs significantly less without losing or reducing the
configuration space. Although the modeling, formulation and control theory of UMS have been studied to
a great extent in the last decade, the control of a UMS in practical applications including aerial and
underwater vehicles remains a nontrivial task. Very interesting reviews and books have been published on
this topic to emphasize the importance and applications of the UMS [1], [2], [3]. The condition of
underactuation in mechanics, robotics, mechatronics, or dynamical systems refers to a system with more
degrees of freedom (number of independent variables that define the system configuration) than actuators
(input variables) to be controlled. This restriction implies that some of the configuration variables of the
system cannot be directly commanded, which highly complicates the design of control algorithms.

The problem of finding an effective control law for an underactuated nonlinear system with fewer
actuators than the number of degrees of freedom to control has attracted increasing attention because of its
special properties. Systems with fewer actuators than degrees of freedom appear more and more in
applications [4], such as underactuated UAVs [5], underactuated flexible joint robots [6], wheeled-bipedal
robots [7], and underactuated AUVs [8]. In the presence of an actuator-free joint and a non-actuated free
joint, it is not possible for conventional control to control the desired outputs well. Therefore, this system
cannot follow the set signal arbitrarily.

To solve the problem, the classical linear control approaches are designed. For example, S.E. Oltean
[9] proposed fuzzy-PD controllers for swing-up control and stability for the rotary inverted pendulum (RIP).
Yang et al. [10] introduced a hybrid pole-placement controller and proportional-integral—derivative (PID)
or fractional-order PID (FOPID) to simultaneously track the control and stabilization of the RIP system.
Mathew et al. [11] developed the linear quadratic regulator (LQR) control for the RIP system. Nguyen et
al. [12] proposed a hybrid control between the feedback linearization-based energy control methods.
However, the above controllers have weaknesses such as the exact physical parameters are not known, or
the mathematical model is not accurate, leading to the design of the controller being extremely difficult.
Moreover, the control quality will not be good in different operating conditions and the stability of the
system cannot be guaranteed in the presence of system uncertainties and disturbances.
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To overcome the drawbacks of classical control, a hybrid linear control with modern control techniques
such as sliding mode control (SMC), and fuzzy logic control (FLC) are considered. Hazem et al. [13]
proposed a fuzzy-based LQR for stability control of a double-link RIP system. Bekkar et al. [14] proposed
an online tuning LQR based on FLC for balancing and tracking control of the RIP system. In which, FLC
was used to adjust the weighting matrices Q and R of LQR. However, the stability of FLC is difficult to
confirm based on Lyapunov law. Therefore, Nguyen et al. [15] proposed a hybrid fuzzy-LQR and SMC for
the swing-up and balancing control of the Pendubot system. In which, the SMC scheme was used for swing
up and fuzzy-based LQR was applied for tracking and balancing control. Nagarajan et al. [16] proposed a
hybrid PID and SMC control for the RIP system, in which the PID and SMC parameters were optimized
by an improved whale optimization algorithm (WOA). Chawla et al. [17] introduced a combination of LQR
and SMC for the robust control of the RIP system, where LQR for optimal performance and SMC for robust
control. The strength of approaches is based on SMC and FLC which are designed based on the system
dynamics without linearization and the stability of the system can be guaranteed. However, the control
parameters of these approaches are not adaptive or self-adaptive in different operating condition or external
disturbacnes. Furthermore, due to the sliding control characteristic, there is chattering phenomenon
affecting the hardware of RIP system.

Recently, self-learning and adaptive control have received a lot of research attention. For example,
Yang et al. [18] designed a swing-up strategy by using trajectory planning and the inertia effect. The hybrid
adaptive neural network and linear matrix inequation control were designed for balancing and stabilization.
Bhourji et al. [19] proposed reinforcement learning (RL) control based on proximal deterministic policy
gradient to control the RIP system. Dao et al. [20] proposed an adaptive integral sliding-mode control using
a reinforcement learning-based adaptive dynamic programming (ADP) strategy for the pendulum system
to improve the tracking control quality. Sousy et al. [21] proposed an adaptive super-twisting PID-SMC
controller for the stabilization of the RIP system. In which, a super-twisting PID-SMC component was used
for stability control and an adaptive control was used to approximate the uncertain bounds of disturbances.
Junior et al. [22] designed the model reference control-based recurrent paraconsistent neural network
(RPNN) for tracking the trajectory of RIP system. Nghi et al. [23] proposed a combined LQR and online
radial basis function neural network (NN) for stabilizing of RIP system. In which, RBFNN was used to
cancel the systematic deviation and external disturbances. Saleem et al. [24] designed a stable online gain-
adjustment mechanism via state-error-dependent nonlinear-scaling functions to self-tun the coefficients of
LQR. Hazem et al. [25] introduced novel LQR gains tuned by using radial basis neuro-fuzzy architecture
for RIP system. Zeghlache et al. [26] developed an adaptive fuzzy fast terminal sliding mode control for
the pendulum system. In which, fast terminal sliding mode control was designed to guarantee faults,
uncertainties compensation, and chattering phenomenon reduction. The common point of these studies is
to propose a classical SMC scheme to ensure stability and use NN/FLC model for adaptive control to cope
with the system uncertainties.

In this paper, an adaptive control is proposed to control RIP system. In which, the first neural network
focuses on tracking a desired trajectory for the manipulator arm, while the second one stabilizes the
pendulum at its upright position.

The main contributions of this study are as follows,

(1) The proposed control method is a combination of linear feedback and neural network adaptation,
although not a new control method for MIMO nonlinear system, but the approach for the
underactuated nonlinear systems is to propose a tracking error filter function that is different from
the previous indirect adaptive control methods for full-order systems and adaptive sliding control.
Thanks to the tracking error filter function proposed here, the matrix calculation with a non-square
matrix due to lack of order is avoided, which is difficult to calculate (must go through the
calculation of the pseudo-inverse matrix). This control method also avoids the oscillation of the
control signal, the chattering phenomenon of the sliding control method.

(2) Lyapunov stability analysis derives update laws for the two neural networks, enabling
simultaneous stabilization of arm orientation and pendulum position

(3) Simulation and experimental results are tested to prove the effectiveness of the proposed
controller.
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The rest of the paper is as follows. Section 2 shows the system dynamics and problem formulation.
Section 3 designs the proposed controller and stability analysis. Section 4 presents the simulation results
and discussion. Section 4 also presents an experimental configuration to test the effectiveness of the
proposed approach. Finally, the conclusions are summarised in section 5.

2  SYSTEM DYNAMICS AND FORMULATION

2.1 System dynamic

The diagram and coordinates of the RIP system are described in Fig.1. The parameter notations of RIP
system are described in Table 1.

Z, Pendulum
Jp, M

Fig.1. Schematic diagr/am of the RIP system

Table 1. Parameter notations of RIP system

L,/2

No.

Parameters

Ja

Inertia of the arm

La

Total length of the arm

m

Mass of the pendulum

L,/2

Distance to the center of gravity of the pendulum

I

Inertia of the pendulum around its center of gravity

q1

Rotational angle of the arm

q2

Rotational angle of the pendulum

u

Input torque applied on the arm

The dynamic model of the Rotary inverted pendulum can be written as,
M(@).G+V(qd-4+G@q) =1

)
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In which,
%171 _1067. __ [P, + Pysin*a P3cosa]
q_[QZ]_[a]’M(q)_[ P;cosa P,
1. . . .o 1. . .
. ~Pyq;sin(2q;)  —Paqasin(qz) + 5 P2qysin(2qs)
Vigq)=|?% ?
_gpth sin(2q3) 0
_ 0 ) N [Peda]. _ _ U
G(q) = [—Pssina]’ fol@) = P7q2] P T= [0]

P,=J,+ml% P, = mlf,; Py =mlyly; Pp=J, +ml§; P = mgl,; Ps = bg; P; = by,

2.2  Problem Formulation
Kinetic equations of state are as follows,

41 = q3 (2)
42 = Qa4 (3)
4z = fi+ g1u (4)
s = f2+ gou (5)
We denotes as,
fi= detl(M) [M22H1 - M12-H2] (6)
fo= m[MnHz - M21-H1] (7)
Hy = —C1141 — C12G2 — Peqy (8)
H, = TVIC21511 - szflﬁ — P74, — Pssin(qy) 9)
91 = detzlzvl) 192 = det(j\/ll) (10)
Here, it is important to define a proper function of the error to gain the control goal as,
o= [el] _ [%1— fh] _ [%1 - ‘h] c R2 (11)
€z Qa2 — 92 —q2
Taking the derivative of Eg.11, we have,
€1 = qa1— 1 (12)
€= —( (13)
€1 = Ga1— f1— g1u (14)
€= —f— gou (15)

Assumption 1. The desired trajectory of the arm of RIP system is that the signal q,4; is a smooth, second-
differentiable, and bounded function.
941 (OI], [gar Ol lGa: DI < 6 (16)
In which, delta is a positive constant.
Since the system is a underactuated mechanical system (two joints but only one action), We propose an
output function y(t) € R as a filtered tracking error given by
y(t) = kieq + kpe, + 64+ €, a7
Where k;, k, is a positive constant chosen such that the matrix H of the error system is Huwizt.
According to [27], the method of choosing k,, k, so that the following conditions are satisfied, the
system will ensure the stability of the uniformly ultimately bounded (UUB).
P;>P,
0<k, <=
P
k1Py+P; | k1Ps5(P3—Py)
kkz > P3 + P3(P5—k1P7)
Taking the derivative of Eqg.18, we obtain,
y(t) = kiég + kyé, + €, + &,
= kiéy+ kaéy + Gar— fr— g1u — f2— Gau
= kié1 + kyéy + Ga1 — (fi+f2) — (g1 + g2)u
=kié + kyéy + Gg1 — F — Gu (19)
Where, F = fi+f,, G= g1+ g2

(18)
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Remark 1. According to [27], for the case of RIP system, we have
g1+9, <0, V|g,| < arccos(?) (19a)
3

The inequality (19a) is satisfied for all time t > 0.
Theorem 1. Consider the RIP system (1) with the control law given by (20)
u =

G
(20)
Where k3 > 0, the tracking error e = [e;, e,]” satisfies tlLrge = 0.
Proof. The Lyapunov function is selected as,
v =2y (21)
Differentiating V can be obtained,
V=yy=ykiés + kyé; + g1 — F — Gu) (22)

Substituting (20) into (22), we can obtain,
i kié1+ kyéy + Gaga —F+ k
=y (kiey+ Koy + gy - F - g2 A0 )

=y (ke + kyéy + Gag — F —kqéy — kypéy — Gg1 + F — k3y)

= —kyy? <0 (23)
The proof is completed.

3 DESIGNED THE ADAPTIVE NEURAL CONTROLLER

In this section, the study focuses on designing a control system for balancing and tracking the trajectory
of a RIP system using an adaptive neural control. Specifically, once the pendulum’s swing-up phase
transitions into a control area that meets the constraint condition g, as defined in Eq. (19a), the adaptive
neural control mechanism is activated. A summary of the adaptive neural control block diagram is
illustrated in Figure 2.

Inverted
Pendulum

N A A
r—T System
1 .
¢+ —(gf +1g, ) _ Neuron network estimator
A

Y T
W, =-K,yro(V, X)‘

\.

)

% y=61+éz+kle1+k2eﬂ

S
A\ 4

vV
A

A 2
Gr———
G =W, oV, X)

A

\.

[ F=Wov)n) e

1
;[ W, :_Kfy(o(ngX) ]‘_

Fig. 2. The block diagram of the proposed controller for RIP system
The details of the components in the block diagram of Figure 2 are designed as follows. When the system
parameters are unknown, we do not have a description of F and G. We can approximate F and G functions
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through a neural network as follows,

F= WfT(p(Vfo) + & (24)

G=W ol x)+ ¢ (25)
Where, &, ¢, are representing the approximate errors of F and G functions. x is an input of neuron x =
[q1 2 G, G, 117. @(.) is a hidden layer activation function. The weighting vector V = [VL-]-] W =

(W, W, ... W,lT, i =1=+n,j =1+ m.nis the number of neurons of the input layer and m is the
number of hidden neurons.

For simplicity, we can choose V as a matrix with randomly selected constant values in a range of [-1;
1]. Therefore, when the system state signals are measured, we design the neural network model to estimate
F and G as,

F:= I/I/fT(p(Vfo) (26)

G = W o (V) x) (27)
The estimated error is defined as,

G=G—- G~ W o(V x) (29)

Wr= Wp — Wr; Wy= W, — W (30)
The proposed neural network-based adaptive control law is given as,

U= kié1+ kyéy+ ijgl—ﬁ+ k3y+ ug (31)

Remark 2. For systeGm (1) and Remark 1, there exist negative boundaries of G function. Without losing
generality, we choose the boundary of the function G in the experiment as follows:
{G(t +1)=-1if |G| < -1
G(t+1)=G(t) otherwise
Theorem 2. Consider the RIP system (1) with the adaptive control law is given by (31), Wy, W, will
converge, according to the Barbalat lemma, y(t) will go to zero exponentially as t goes to .
Proof. The Lyapunov function is selected as,

1 1 ~ 1 1 ~ 1

V= 2y + STr(Wi K We) + S Tr(W) Kg W) (32)
Differentiating V can be obtained,

V=yy+Tr (VT/fTKf‘lvT/f) + Tr (VT{QTK;VT/Q) (33)

Substituting (19) into (33), we can obtain,
V =ylk&, + kb, + Ggy — F — Gu] + Tr (VT/fTKf‘lvT/f) + Tr (VT{QTK;VT/Q)
= ylkiéy + kpés + Gagr — F — (G + G)uy]
+77 (W] K7Wy ) + Tr (W KW,y ) (34)
Substituting (31) into (34), we can obtain, .
v =y[k1él+ kyty + Gigy — F — G120 F Kol t q?—F+ k3y+us>—éu]
+77 (W7 KW ) + Tr (W Ky W,y ) (35)
Simplify (35), we get
V=y(F—F—-Gu— ksy—us)+Tr (WfTKf_lwf) + Tr (I/T{(JTKg‘ll/T{q)
= —kyy? —yF —yGu— Tr (WfTKf_lﬁ/f) - Tr (VT{QTKgl%) — yug (36)
Substituting (28) and (29) into (36), we can obtain,
V= —ksy? —yW o(Vfx) —yWS oV x)u— Tr (WfTKf_lwf)
—Tr (%TKgll/T{L]) — Yug — & — g4U
= —kyy?— Tr [WfT (ygo(Vfo) + Kf_ll/T/f)]
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—Tr [VT/gT (yrfp(Vfo) + K;l@)] — YU — & — g4U (37)

The weights of neuron update rule and the error compensation signal are chosen as,

Tr [I/T/fT (y(p(Vfo) + Kf'lwf)] =0 (38)

Tr [I/T{QT (yugo (Vfx) + Kgl@)] =0 (39)

—yus — & —gu=0 (40)
From (38), (39) and (40), we deduce

W = —Kryo(V/x) (41)

Wy = —Kg yup(V{x) (42)

Us = — %(gf + Sgu) (43)
Substituting (38), (39) and (40) into (37), we can obtain,

V =—ksy? <0,Vk; >0 (44)

The proof is completed.
4 RESULTS AND DISCUSSION
4.1  Simulation results

The simulation of RIP system has been conducted on MATLAB/Simulink with the following initial
conditions. The dynamic parameters (P1, P2, P3, P4, P5, P6, P7) of RIP model [28] are (0.0619, 0.0149,
0.0185, 0.0131, 0.5076, 0.0083, 0.0007), respectively. The control parameters are chosen as ki = 1, k = 5,
ks = 18. Neural networks for estimating function F are chosen as K = -10, kw = 0.1, the number of hidden
layer neurons of 10, the matrix V¢ is randomly generated in the range [-1;1], and the activation function is
tansig. Neural Networks for estimating function G are chosen as Ky = -2.5, ky = 0.35, the number of hidden
layer neurons is 10, the matrix Vg is randomly generated in the range [-1;1], and the activation function is
logsig. The simulink program of the proposed control for RIP system is described in Fig.3.

() T‘—lT— F_hat qle b D

‘ Wk
J-L ‘
.

NN for F qi

oooon
oo ’ | |

to P u

q g3
L ) |
r—e \ A
G Rotary IP Model
Control L
RN ‘
) ﬁJ._G_hm q

‘
I—Wg T
! NN for G
| |
DdJ * J‘ ‘ F
< e L o aft

Internal Model

Fig.3. Simulation diagram of the proposed adaptive controller

Remark 3. The parameters ki, k, were determined through trial and error. While the control laws (20)
and (31) are derived using Lyapunov's method, ensuring system stability, these parameters may not
represent the optimal control laws for all other underactuated systems.

To verify the performance of the proposed controller, the trajectory references are used including case
1 — sinusoidal signal and case 2 - sinusoidal signal with external disturbance. The results of case 1 are
shown in Fig.4, Fig.5, and Fig.6. Fig.4 gives the trajectory tracking of g, (link 1 of RIP system), g,(link 2
of RIP system), and the control input. We can see that link 1 of RIP system can track the desired sinusoidal
signal in 1.6 (sec) and the pendulum (link 2 of RIP system) is close to the upright position (nearly zero).
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15 | | | | | | | 1
0 1 2 3 4 5 6 7 8 9 10
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Fig.4. Trajectory tracking of an adaptive controller in case 1
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Fig.5. The The estimated results of G function and the convergence of the weights neuron
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Fig.6. The estimated results of the F function and the convergence of the weights neuron
Fig.5 and Fig.6 show the estimated functions of F and G, and the convergence of the neuron weighting,
respectively We can see that the weighs Wy and W, of neural networks will stable after 0.7 (sec) and 3.2
(sec), respectively. This shows the strong adaptability of the proposed controller.
To check the robustness of the controller, an external disturbance as a torque is applied to the pendulum
for 0.5 (sec) (case 2) with measurement noise, and the controller performance is evaluated. The other
variables with time are displayed in Fig.7.

=

25
0

Hh o o

signal control u

=)

0 1 2 3 4 5 6 7 8 9 10
time (second)

Fig.7. Trajectory tracking of an adaptive controller in case 2
Fig.7 gives the trajectory tracking of g, (link 1 of RIP system), g, (link 2 of RIP system), and the control
input. We can see that the system response is stable, and the output follows the input desired signal well,
the network weights converge after 2 seconds. Although RIP parameters change or the noise affects the
system, the output response also achieves the desired result.

4.2  Experimental results

The experimental RIP system is configured in Fig.8. The diagram of data acquisition and control RIP
system with Matlab/Simulink is programmed in Fig.9 and Fig.10. In which, PC is installed Matlab 2013b
to implement control with Real-Time Windows Target. National Instrument PCI 6221 board (DAQ) is used
to measure the angular of link 1 and link 2 of the RIP system and control the motor DC through the amplifier
drive board. Minertia 27V/70W 2000RPM DC motor with encoder 240 pulses/rev is used. The angular
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error and angular velocity when sampling at 100Hz +0.00654 rad va +0.654 radl/s, respectively. Motor
amplifier drive control with load-bearing parameters is 300W (24V, 15A). Two Encoders 1000 pulses/rev
are used to collect the angular link1 and link2 of RIP system. The control parameters are selected as folows,
ki=2, ko =25, ks=75, Kf=-0.85, Kg = -0.65, kws = 0.45, kwg = 0.5. The number of hidden layers for neural
networks is 10.

Encoder
PCI 6221
Qs ) a—
Rotary
Encoder Inverted
i gk |/——| Pendulum
g -
Motor DC
- -
Amplifier |::>“
PC .
driver :

Fig.8. Experimental RIP system configuration

A|—;t e |_d

Input > w

Mational Instruments
FCI-6221 [2h]

h 4
N_.

L » 2)

J Lo/
ET:DDITESI- 'W L Z_1 Ll @
th_d

Mational Instruments
PCI-6221 [2h]

Fig.9. Diagram of data acquisition of RIP through two encoders with Matlab/Simulink

Freguency
Output

National Instruments
PCI-5221 [1h]

Fraguency
Cutput

National Instruments
PCI-6221 [1h]

Fig.10. Diagram of control RIP system with Matlab/Simulink
Case 1. Control RIP system stable at the equilibrium point with external disturbance. Fig.11 to Fig.14
show the trajectory tracking of g, (link 1 of RIP system), g, (link 2 of RIP system), the control input, and
the convergence of the neuron weighting.
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Fig.11. Stable link 1 response results at equilibrium with disturbance
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Fig.12. Pendulum (link 2) response results at equilibrium with disturbance
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. The system control signal is stable at the equilibrium point with disturbance
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Fig.14. Estimated F(g) and norm weights of neural networks
With the designed network structure and adjusted learning coefficient, as shown in Fig.11 to Fig.14 in
the first 20 (sec), the estimated neuron sets have not been the correct value of the system. Then, the values
are approximated and the network output and carrier weights gradually update to a value for a stable system
in about 8 (sec). At the times of 28 (sec), 52 (sec), 87 (sec), the system output was affected by external
noise, the neural network responded well to the role and adjusted the control signal to respond to this change
and make for a stable system.
Case 2. Sinusoidal trajectory references with ® = 0.5 rad/s. Fig.15 to Fig.18 show the trajectory tracking

of g4 (link 1 of RIP system), g, (link 2 of RIP system), the control input, and the approximated values of the
estimated neuron networks in this case

g1(rad)

g2 (rad)
o

[¢)]
o
—
1
|
i
c
(2]
g
=}
Q@
C
©

u (% duty cycle)

_100 L . | | | 1 | | | | |
0 10 20 30 40 50 60 70 80 90 100

time (s)
Fig.15. Result of experimental response of manipulator (link 1), pendulum (link 2) and control signal in
case 2
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sl L L L L L J & L I I I |
50 70 80 % 100 o 10 20 30 40 50 60 70 80 90 100
time (s) time.

Fig.16. Adaptive approximation of F and G functions in case 2

As can be seen in Figs 15, 16, note that in the first 8 seconds, the system is operating in swing-up mode,
moving the pendulum from the stable equilibrium position g2 at pi to the unstable equilibrium position g2
in the domain that satisfies the condition (19a). At about 15 seconds, we control the manipulator (arm) to
follow the sine signal with a frequency of 0.5rad/s, the response of the system to follow the desired signal
is quite good, although the experimental mechanical system is not of good quality due to being hand-made.
The robot arm has tracked the desired sinusoidal signal and the pendulum is well balanced. The estimated
values of the G and F functions ensure that the robot follows the set signal and the pendulum remains stable
at the above equilibrium position.

Case 3. Sinusoidal trajectory references with @ =1.5 rad/s. Fig.17 shows the trajectory tracking of
q1(link 1 of RIP system), g,(link 2 of RIP system), the control input, and the approximated values of the

estimated neuron networks
1.5

1

0.5

q1 (rad)
o

0 50 100 150

0 50 100 150

u (% duty cycle)

0 50 100 150
time (s)

Fig.17. Result of the experimental response of manipulator (link 1), pendulum (link 2) and control signal
in case 3
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Fig.18. Adaptive approximation of F and G functions in case 3

As can be seen in Figures 17, 18, note that during the first 10 seconds, the system operates in swing-up
mode, moving the pendulum from the stable equilibrium position g2 to the unstable equilibrium position
g2 in the region satisfying the condition (19a). After the successful Swing up, the adaptive neural control
has been tracking the sinusoidal signal with a frequency of 1.5rad/s. The results show that the pendulum
remains stable, tracking the reference signal but with a large error.

In summary, the neural adaptive control achieves robustness, balanced control, and good tracking with
a sinusoidal reference signal with a frequency change of less than 0.5 rad/2 in the presence of system
uncertainty and external disturbances. Despite its potential, the proposed control method still faces
limitations, including that we have not specified constraints for the change of the input signal. When the
input signal changes with a large amplitude suddenly, the control signal (31) is not updated correctly,
leading to system instability. In the control signal (31), there exists a control component u, (43) that must
ensure the upper and lower bounds for the estimation error of the neural network. If this component is not
properly guaranteed, the system will easily become unstable.

5 CONCLUSION

This paper showed the development of an adaptive neural network control scheme to control the rotary
inverted pendulum (RIP) system with the manipulator (link 1) following the desired input signal and the
pendulum (link 2) stabilizes at the equilibrium position. The controller was derived from the universal
approximation property of neural networks, and weight adaptation laws were designed. The simulation
results clearly indicate the effectiveness of the proposed control law in an uncertain nonlinear underactuated
system. The controller simultaneously stabilizes the manipulator’s orientation and the angular position of
the pendulum. The controller is able to provide robust, non-fluctuation performance in the presence of
parametric uncertainty and external disturbances. The proposed adaptive algorithm has also been applied
to the experimental RIP system via the DAQ 6221 NI board with Windows Real Time Target. Experimental
results also show that the system response follows the desired signal when the kinematic parameters of the
system are unknown and there is measurement noise affecting the system. Despite its potential, the proposed
control method still has limitations, including the input signal constraints, and upper and lower bounds of
the neural network estimation error, which may affect the control quality. These issues will be addressed in
future works.
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PIEU KHIEN NO-RON THICH NGHI BEN VUNG CHO HE PHI TUYEN
DUGI BAC: NGHIEN CUU TRUONG HQP CON LAC NGUQC QUAY

NGUYEN HOANG HIEU, MAI THANG LONG, NGUYEN NGOC SON*
Khoa Céng nghé Pién tir, trwong Pai hoc Cong nghiép Thanh Phé Ho Chi Minh,
* Tac gia lién hé: nguyenngocson@iuh.edu.vn

Tém tat. He théng bi thiéu diéu khién thé hién su tuong tic manh mé va dong luc phi tuyén cao, giy ra
thach thtrc cho viéc diéu khién chinh xac. Bai bao nay gidi thiéu phuong phap diéu khién thich nghi cho hé
thdng con lic dao chiéu quay (RIP) bi thiéu diéu khién. Muyc tiéu 1a cho canh tay co khi theo doi quy dao
mong mudn va dong thoi duy tri con lic & vi tri thang dimg. Phuong phap dé xuit sir dung hai mang no-
ron: mang thi nhét tap trung vao viéc theo ddi quy dao mong mudn cia canh tay co khi, trong khi mang
thir hai 6n dinh con lac & vi tri thang dimg. On dinh hé thong bang 1y thuyét Lyapunov. Dé xac thuc hiéu
qua cua chién lugc diéu khién dé xuit, céc thi nghiém dugc thyc hién st dung thé thu thap dit liéu NI-PCI
6221 voi hé thong RIP. Ca két qua mo phong va thyc nghiém déu nhan manh tinh manh mé ciia phuong
phap didu khién dé xuit trudc cac bat dinh cua hé thong va nhiu bén ngoai, dat duoc hiéu ning van hanh
on dinh.
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