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Abstract. Forecasting housing demand has been a prevalent research focus globally, primarily employing
traditional econometric methods. However, the application of machine learning in this domain remains
limited, particularly in the New Zealand context. This study addresses this gap by implementing Elastic
Net, XGBoost, and Recurrent Neural Network models to predict residential housing demand in New
Zealand using historical economic and demographic data from 1995. The models were evaluated using a
comprehensive framework of six complementary metrics (R2, SMAPE, MAE, RMSE, MBE, and MASE),
with the RNN model achieving the highest accuracy. Results demonstrate that machine learning algorithms
significantly enhance housing demand forecasting, with temporal models outperforming traditional
approaches. The analysis of feature importance identified CPI, construction investment, import values, and
unemployment as key drivers, while demographic factors showed limited impact on housing demand. These
findings provide valuable insights for policymakers and construction firms addressing New Zealand's
housing challenges. Future research should expand dataset dimensions and improve model interpretability.
Keywords. Machine Learning, Neural Networks, Housing Demand, Forecasting Models, Time Series
Analysis

1 INTRODUCTION

New Zealand faces a critical housing crisis, where construction—the nation’s fifth-largest industry,
contributing 6.3% to GDP [1]—struggles to meet growing demand, resulting in an unaffordable market [2].
The housing market faces two predominant concerns: rising prices and the imbalance between demand and
supply [3]. While housing price prediction has been extensively researched, studies focusing on residential
construction demand remain scarce, particularly in New Zealand, exacerbating the challenges of addressing
supply shortages that adversely affect vulnerable populations mentally and physically [4].

Accurate forecasting of housing demand is essential to guide policymakers, suppliers, developers, and
contractors in planning and mitigating these issues. However, traditional econometric methods, widely used
for housing demand forecasting globally [5], often fail in dynamic markets like New Zealand. These
methods struggle to capture complex, non-linear relationships between economic and demographic factors
and require significant human judgment to model temporal dynamics, limiting their effectiveness [6].

This study proposes using machine learning (ML) to forecast housing demand in New Zealand,
leveraging ML’s ability to automatically identify non-linear correlations and temporal patterns without
human intervention [6]. This study applies advanced ML algorithms (Elastic Net, XGBoost, RNN) to data
from the Reserve Bank of New Zealand to identify key demographic and economic indicators and compare
model accuracy, aiming to determine which model delivers the best overall performance, with high R? and
low error values across the selected metrics.

The rest of this paper is structured as follows. Section 2 provides a review of existing literature on
machine learning techniques and housing demand prediction. Section 3 outlines the methodology used in
the study. Section 4 discusses the results and offers a comparative analysis of model performance. Finally,
the paper concludes with key findings and directions for future research.
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2 LITERATURE REVIEW

2.1  Machine Learning Foundations

Machine learning represents an application of computer science that employs algorithms to develop
statistical analysis models capable of automatic processing without continuous human intervention. These
models generate trending patterns from input data that can predict future events or unknown indices [7].

ML algorithms fall into three main categories: supervised, unsupervised, and reinforcement learning.
This research focuses specifically on supervised ML [8], which utilizes labeled datasets with predetermined
features. In supervised learning, the researcher selects input and output features and determines data
allocation for training and testing purposes. The models then identify patterns within the dataset and
generate predictions for unknown values. Supervised ML encompasses two primary categories: regression
and classification.

2.1.1  Regression Algorithms

Regression models [9] are trained on numerical datasets to uncover patterns in input data and predict

continuous dependent variable values. This study employs the following regression algorithms:

2111 Elastic Net

Elastic Net [10] integrates the advantages of both Lasso and Ridge Regression, with a penalty function that
combines both approaches:

P(B) =Aism gz + Az g ()
This algorithm evaluates parameters of correlated variables collectively, determining whether to retain
or remove them based on their collective impact on the target variable, thereby enhancing prediction

accuracy.

2.1.1.2 XGBoost

XGBoost (eXtreme Gradient Boosting) [11] employs decision tree methods and gradient boosting
frameworks [12]. It operates by minimizing residual sums with hyperparameters to prevent overfitting:
n
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where y represents the regularization parameter for leaf numbers, T denotes tree leaf count, A is the leaf
weight parameter, and w is individual leaf weight.
XGBoost begins with an initial random prediction and sequentially builds trees, with each subsequent
tree aiming to minimize preceding errors. The final output combines the initial prediction with outputs from
all trees, scaled by a learning rate:

M
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m=1
where 0 represents the learning rate controlling new tree contributions to the final prediction.

2113 Recurrent Neural Networks (RNN)

RNNs [13], a fundamental artificial neural network (ANN) model, incorporate feedback loops where
previous hidden neuron outcomes inform subsequent neurons, aiming to minimize output-target
differences. The hidden state h; is expressed as:

ht = tanh(WhXt + Uhht—l + bh) (4)
where W}, and U, are weight matrices, x; is the input at time step t, h;_ is the hidden state of the previous
time step, by, is the bias parameter, and tanh serves as the activation function.
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Figure 1: Structure of artificial neural networks and recurrent neural networks

2.2 Related Research

2.2.1  Traditional Econometric Methods

Before the widespread adoption of ML predictive models, researchers employed various traditional
techniques such as AutoRegressive Integrated Moving Average (ARIMA), Box-Jenkins, and panel data
analysis. These methods continue to be used alongside ML models. Studies by [14] and [15] developed
models forecasting private housing demand in various Turkish cities using econometric methods. Both
studies were limited by the number of independent variables they could incorporate. Additionally,
significant human intervention in selecting statistical functions limited their ability to handle complex
models, a disadvantage that machine learning approaches typically overcome.

Goh [6] compared the accuracy of ANN and Box-Jenkins forecasting models for housing demand in
Singapore from 1975 to 1994. The ML model demonstrated 15% greater precision than the econometric
approach, attributed to ANN's capacity to automatically establish non-linear correlations between variables
without human intervention. Similarly, Box-Jenkins was outperformed by ANNs and support vector
machines in forecasting construction work gross values in Hong Kong using univariate datasets from 1983
to 2014 [16], [17].

2.2.2  Machine Learning Models

ML-based forecasting models have demonstrated improvements over traditional econometric methods
by reducing human judgment in pattern evaluation. ANN exemplified this advantage by outperforming
Box-Jenkins in forecasting construction work gross values in Hong Kong using 1983-2014 data [17]. While
proving ML algorithms' superiority, the study was limited by using only univariate time series data without
incorporating additional features.

Several years later, the study at [18] confirmed ANN's effectiveness for multivariate time series analysis.
In forecasting housing sales in a Turkish city, ANN achieved an R? value of 0.94, surpassing Support Vector
Machine, Linear Regression, Gaussian Process Regression, and Regression Tree models. The study
employed seven economic indicators but omitted demographic features from housing demand analysis.

The authors of [19] conducted comprehensive research on residential construction demand forecasting in
Jordan using 23 economic indicators collected from January 2007 to March 2022. Unlike [18], this study
introduced a hybrid linear-based model (Elastic-Net) that achieved the highest accuracy among 11
algorithms evaluated, including ANN. Interest rates were identified as the dominant factor affecting
Jordanian housing demand. However, the study focused exclusively on economic indicators, neglecting
potentially beneficial demographic features.

2.3 Research Gaps

2.3.1  Dataset Limitations

Many housing demand forecasting studies are constrained by limited feature numbers. For instance, Lam
and Oshodi [17] employed a univariate dataset (total real estate gross sales) to forecast Hong Kong housing
demand. While single-feature datasets simplify processes and accommodate limited data sources, they risk
overfitting and may inadequately reflect real-world scenarios where multiple factors interact complexly
[20]. Univariate models frequently miss important correlations and patterns captured in multiple-input
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models.

Additionally, some studies exclude demographic indicators from predictive models. For example, Emec
and Tekin [18] used economic features (interest rate, consumer confidence, consumer price, and
construction confidence indexes) to forecast housing demand in Konya City, Turkey, but excluded
demographic indicators such as population, migration, and age structure. Conversely, Hong [2] emphasized
demographic features when addressing New Zealand's housing shortage.

2.3.2 ML Algorithm Limitations

It is noted in [6] that advanced algorithms like XGBoost and ANN present interpretability challenges due
to their “black box™ nature, particularly when explanations are required. High dimensionality and complex
internal representations complicate clear mechanism interpretation for stakeholders unfamiliar with
machine learning concepts. Developing methods for deeper interpretation of ANN operations represents a
significant area for future research.

Furthermore, most studies employ basic ANNs not specifically designed for sequential time series data
[21]. Basic ANNs (Feedforward Neural Networks) cannot effectively determine how preceding data
influence subsequent points and final results. Advanced ANNSs like RNNs and Long Short Term Memory
networks (LSTM) address this limitation by incorporating memory or recurrent networks from previous
inputs [21]. Implementing these advanced ANNSs in housing demand forecasting could improve accuracy
for time-series data analysis.

3  METHODOLOGY

This research applies machine learning algorithms to develop multiple forecasting models aimed at
predicting housing demand. In addition, it leverages feature importance assessment techniques to interpret
the influence of individual input features on the predicted demand. Figure 2 presents a flowchart illustrating
the general steps involved in a typical machine learning project. The process includes seven key stages,
forming a cyclical workflow in which steps may be revisited for refinement or additional data collection,
depending on the results obtained during the testing and evaluation phase. The cycle begins with data
collection and concludes with the development of a reliable predictive model and the insights derived from
it.

Y
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Figure 2: Overall machine learning workflow

3.1 Data Collection and Preprocessing

This study utilizes longitudinal data on New Zealand's demographic and economic indicators from the
Reserve Bank of New Zealand database at https://www.rbnz.govt.nz/statistics/series/data-file-index-page.
The dataset includes quarterly measurements from various macroeconomic indicators recorded primarily
since the 1990s to September 2024 and published openly for the purpose of research and education. The
database is categorized into separate series including exchange and interest rate, lending and monetary
statistics, NZ debt securities, Household, and Economy indicators, etc. Each series contains different titles
(or indicators) marked by a single code. From the complete database, we selected 16 indicators based on
their demonstrated influence on construction industry in general and on residential housing demand in
specific, as stated and utilized in previous research [22], [23] . Table 1 shows the indicators that were
extracted from the database for the use of this research.
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Table 1: Dataset features

No Indicators Code Period Unit Peridiocity Category

1  Population M12 03/1991-09/2024 Quarterly  Number Demography

2 Migration M12 03/2000-09/2024 Quarterly  Number Demography

3 Consumers Price Index (CPI) M1  03/1991-09/2024 Index Quarterly ~ Economy

4  Private consumption M2  09/1995-09/2024 NZDm Quarterly ~ Economy
expenditure

5  Number of building consent 03/1993-09/2024  Number Quarterly ~ Economy
(Target)

6  Gross fixed capital formation M3 03/1993-09/2024 NZDm Quarterly ~ Economy
- Residential buildings

7  Domestic trade - Retail M4 12/1992-09/2024 NZDm Quarterly ~ Economy
8  Domestic trade - Wholesale M4  12/1992-09/2024 NZDm Quarterly ~ Economy
9 GDP M5  06/1987-06/2024 NZDm Quarterly ~ Economy
10 National and household M6 1972-2023 NZDm Yearly Economy
saving
11 Import Volume M8  03/1990-09/2024 NZDm Quarterly ~ Economy
12 Export Volume M8  03/1990-09/2024 NZDm Quarterly ~ Economy
13 Unemployment rate M9  03/1994-09/2024 % Quarterly ~ Economy
14 House sales and price index M10 03/1990-06/2024 Number Quarterly ~ Economy
15 Mortgage interest rate B20 02/1964-11/2024 % Monthly Economy

16 Exchange rate NZD/USD Bl 06/1973-11/2024 NZD/USD Monthly Economy

Table 1 shows that some indicators have data before 1995, but collection was inconsistent, with varying
and missing values. To ensure consistency across all features, we selected quarterly data from September
1995 to September 2024, yielding 117 observations, using earlier data only for calculating lagged features
where available. The final dataset comprises 15 independent variables including Population, Net Migration,
Consumers Price Index (CPI), Private Consumption Expenditure, Gross Fixed Capital Formation -
Residential Buildings, Domestic Trade (Retail and Wholesale), GDP, National and Household Savings,
Import and Export Volumes, Unemployment Rate, House Sales and Price Index, Mortgage Interest Rate,
and Exchange Rate NZD/USD. The target variable is the Number of Building Consents.

3.1.1  Exploratory Data Analysis (EDA)

Figure 3 presents a heat map [24] displaying the correlation coefficients among various economic
indicators. The values in the matrix range from -1 to 1, representing both the strength and direction of linear
relationships between pairs of variables. Notably, there is a strong positive correlation (0.84) between the
Number of Building Consents and Gross Fixed Capital Formation — Residential Building, indicating that
these two indicators tend to move in tandem. In contrast, a moderate negative correlation (-0.57) exists
between building consents and the unemployment rate, suggesting that higher unemployment is associated
with a decline in the number of building consents issued. Other variables exhibit weak or negligible
correlations, such as the association between house sales to other households and household savings, which
shows a low coefficient of 0.12, implying no significant linear relationship.

3.1.2 DataCleaning

3121 Missing data

There was no net migration data collected before 2000. Since the number of rows is quite limited, instead
of removing those data points, mean value will be filled in those voids (approximately 6,406). This
technique is simple but does not reflect the fluctuation of data within that period especially in the context
of temporal dataset [25]. The study chose this option to reduce data preprocessing time. However, future
studies can improve this using other advanced technique such as Denoising Autoencoder [26].
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Figure 3: Feature correlation

3.1.2.2 Outliers

Outliers are observed in wholesale trade volumes, household savings, and residential housing consents.
Figure 4 illustrates these three variables, all of which show a noticeable peak following the COVID-19
lockdown in 2021. The timing of these outliers aligns across variables, suggesting they are the result of a
rare and significant event rather than data errors. One explanation, supported by several studies, is that
during the pandemic, people tended to increase their savings as a precautionary response. However,
following the rollout of vaccinations, many households began spending these accumulated savings, leading
to the sharp peak observed in the household savings data [27].

To mitigate the effect of these outliers on prediction accuracy, while preserving their contribution as
significant events, the original values were retained to reflect the impact of exceptional circumstances such
as the Covid-19 pandemic. However, for linear ML algorithms including linear regression and Elastic Net,
extreme values can substantially distort results. To address this challenge, the Winsorization technique [28]
was implemented. Winsorization manages outliers by capping extreme values at specified percentiles (the
5% and 95" percentiles in this study) rather than completely removing them, thereby preserving their
statistical significance while reducing their disproportionate influence.

3.1.3  Data Transformation

Each feature is scaled to a range between 0 and 1 by utilizing Min-Max normalization, which is calculated
based on the feature’s minimum and maximum values. This practice offers two main benefits: (1) it helps
mitigate prediction distortion caused by extreme outliers, and (2) it reduces computational time, as the
algorithms no longer need to process variables with differing scales and units. The mathematical
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formulation for Min-Max normalization is shown in Equation (5).
X = Xmin
Xnorm = T _ ®)
Xmax — Xmin

—— Residential dwelling consent
41 Household saving
—— Wholesale trade sales
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Figure 4: Outliers of 3 variables recorded at the same period

3.1.4  Feature Engineering

This study applies a feature engineering technique known as lagged features [29]. This technique is
particularly useful for sequential time series datasets, as it divides the data into time frames. Each time
frame contains a set of time steps used as input to predict the next value. The frame then shifts forward, and
the process repeats, ensuring that previous data points are incorporated into the final predictive results.
Since the dataset in this study is collected quarterly, lagged features are tested with values such as 2, 4, 8,
and so on, until the model achieves the highest R? score. As such, this step also serves as part of the model
tuning process.

Building consents Building consents Building consents_lag_1 Building consents_lag_2
Quarter Quarter

1995-09-30 4927.0 1996-03-31 5773.0 5413.0 4927.0
1995-12-31 5413.0 1996-06-30 6105.0 5773.0 5413.0
1996-03-31 5773.0 1996-09-30 5340.0 6105.0 5773.0
1996-06-20 6105.0 1996-12-31 5617.0 5340.0 6105.0
1996-09-30 5340.0 * 1997-03-31 5592.0 5617.0 5340.0
2023-09-30 8653.0 2023-09-30 8653.0 10062.0 10300.0
2023-12-31 8355.0 2023-12-31 8355.0 8653.0 10062.0
2024-03-31 8420.0 2024-03-31 8420.0 8355.0 8653.0
2024-06-30 8182.0 2024-06-30 8182.0 8420.0 8355.0
2024-09-30 8690.0 2024-09-30 8690.0 8182.0 8420.0

Figure 5: Example of lagged features

This approach is beneficial for time series analysis because it incorporates temporal sequences into
training and captures how past values influence future outcomes. It is particularly useful for models like
linear regression, Elastic Net, and XGBoost, which do not inherently handle sequential data. In the context
of economics, changes in an indicator may not have an immediate effect on the number of building consents.
Instead, the impact may appear after a certain time lag. Lagged features are used here to reflect that delayed
influence of one variable on another.
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3.2 Model Development and Training

The research employed five ML algorithms: Linear Regression (baseline), Elastic Net, Ridge Regression,
XGBoost, and RNN. The data was split in a 90:10 ratio for training and testing, with December 2021 serving
as the split milestone. Figure 6 shows this partition, with the period before the milestone forming the
training set and the remainder serving as the test set according to time sequence.

This 90:10 ratio, while not generally optimal for model evaluation, was selected due to the dataset's
relatively small size. Allocating 90% for training ensured sufficient data points for effective learning.
Additionally, the December 2021 milestone coincides with the peak of building consents before a
significant decline, providing an ideal test case for the models' ability to predict substantial trend changes.
This point also helps isolate the extreme effects of the COVID-19 event while testing the models' capability

to identify the subsequent downward trend.
Train/Test Split

—— Training data !
—— Testing data
12000 4
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Figure 6: Train-test data split showing December 2021 milestone

For model validation, time-series cross-validation was implemented to prevent optimistically biased
results common with traditional cross-validation methods applied to temporal data. As shown in Figure 7,
unlike conventional cross-validation, time-series cross-validation ensures validation sets chronologically
follow training sets, better simulating real-world forecasting conditions where future data remains
unavailable during model training.

 Validation set
Standard k-fold cross validation for k=5 | M Training set | Time series split k-fold cross validation for k=5
o <

14

CV iteration

CV iteration
w

N
L

T T T T T T T T T T
200 460 600 800 1000 0 200 400 €00 800 1000
Sample index Sample index

o4

Figure 7: Traditional vs. time-series cross-validation approaches

3.2.1  XGBoost Training Process

The XGBoost model training proceeded through three distinct stages. Initially, the entire training set was
fitted to a basic XGBoost model with randomly selected parameters to establish feature importance
rankings. Next, the model was repeatedly trained with progressively reduced feature sets, with each iteration
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eliminating less important features based on their previously determined importance scores. Table 2
presents selected results from this iterative process, highlighting that optimal performance (R? = 75.26%)
was achieved with 24 features at a threshold value of 0.004.

Table 2: XGBoost feature selection results (selected values)

Threshold  Number of Features (n) R? (%)
0.000 48 14.23
0.000 42 58.70
0.004 27 -34.27
0.004 25 -14.28
0.004 24 75.26
0.005 23 39.67
0.006 19 54.12
0.066 4 -62.89
0.244 2 9.54

In the final stage, these 24 optimal features were used to train the refined model with hyperparameter
tuning, including number of trees (n_estimators = 10,000), maximum tree depth (max_depth = 7), and
learning rate (learning_rate = 0.3). This hyperparameter optimization further improved the R? score from
0.75t0 0.77.

3.2.2  RNN Architecture and Training

The RNN model architecture, illustrated in Figure 8, is designed to predict housing demand using a
structure with four layers: an input layer, two hidden layers, and an output layer. The input layer receives
the data, which is processed by the first hidden layer (200 neurons) and the second hidden layer (100
neurons) to identify patterns. The output layer then produces a single prediction for the Number of Building
Consents. To prepare the data for the RNN, we organized it into a 3D array with the shape [None, 1, 48].
“None” represents the number of quarters in the training set (flexible for any size), “1” means we use data
from one quarter at a time, and “48” is the number of features. These 48 features come from 16 variables—
15 economic and demographic indicators from Table 1, plus the Number of Building Consents—each
including its current value and two previous values (lags). This results in 16 x 3 = 48 features, allowing
the RNN to use past and present data to forecast future housing demand.

Input shape: (None, 1,48) | Output shape: (None, 1, 200)

Input shape: (None, 1, 200) | Output shape: (None, 100)

Input shape: (None, 100} | Output shape: (None, 1)

Figure 8: RNN model architecture

For the RNIN model, the tanh activation function was selected for both hidden layers to capture non-
linear relationships between variables and mitigate the vanishing gradient problem that commonly affects
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sequential data processing. The output layer employed a linear activation function, appropriate for
regression tasks where predictions need not be bounded within a specific range. The model used the Adam
optimizer [30], chosen for its computational efficiency and effectiveness with non-convex loss functions
typical in neural networks.
3.2.3  Elastic Net and Ridge Regression Tuning
Hyperparameter tuning for the Elastic Net model explored multiple parameter combinations, including:
e Number of iterations: 1000, 1100, 1200
e Regularization strength (a): 0.01, 0.1, 0.5, 1.0, 5, 10.0
e L1/L2ratio: 0,0.01,0.05,0.1,0.2,0.4,0.6,0.8, 1
e Time series cross-validation splits: 4, 8, 12, 16, 24
Optimal performance (R? = 0.69, SMAPE = 12.95%) was achieved with 1100 iterations, a = 0.01, L1/L2
ratio = 0, and 24-fold cross-validation. Notably, the L1/L2 ratio of 0 effectively transformed the model into
pure Ridge Regression, prompting a separate investigation of Ridge Regression with focused regularization
strength values (a = 0.01, 0.05, 0.1, 0.5, 1). This Ridge Regression model achieved R? = 0.77 with a = 0.01,
outperforming the initial Elastic Net implementation.

3.3 Evaluation Metrics

This study uses a set of complementary evaluation metrics to assess model accuracy from different
angles. Each metric captures a specific aspect of prediction quality, allowing for a more complete
understanding of model performance. Together, they address both absolute and relative accuracy, account
for scale-dependent and scale-independent measures, and reflect varying sensitivity to error patterns.

3.3.1  Mean Absolute Error (MAE)

MAE [31] measures the average magnitude of errors without considering their direction, making it
particularly useful for housing demand forecasting where the absolute scale of prediction errors directly
impacts planning decisions. Lower MAE values indicate better model performance.

n
1
MAE == |y, = ©)
i=1

where y; is the actual value and ¥, is the predicted value.
3.3.2  Mean Bias Error (MBE)

MBE [32] reveals systematic biases in predictions, indicating whether a model consistently over- or
under-predicts housing demand:

1
MBE == (5, — ) (7)
i=1

A positive MBE indicates overprediction while negative values show underprediction. While MBE = 0
suggests no overall bias, errors may still be large but offset each other, necessitating analysis alongside
other metrics.
3.3.3  Root Mean Squared Error (RMSE)

RMSE, widely used in forecasting literature [31], [33], provides an error measure in the same units as
the original data:

RMSE = (8)

RMSE emphasizes larger errors because of its squared term, making it ideal for housing demand
forecasting where significant prediction errors can lead to major economic impacts. However, its sensitivity
to outliers requires thorough preprocessing when extreme values occur.

3.3.4  Symmetric Mean Absolute Percentage Error (SMAPE)

SMAPE, initially defined by [34], expresses errors as percentages, making it easier to interpret and
compare results across different datasets. This is especially useful when presenting findings to
policymakers. Its value ranges from 0% to 200%, with 0% indicating a perfect fit and 200% representing
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extremely poor model performance. Equation (9) describes how SMAPE is calculated.
n

100% lyi — %l
SMAPE = Z —
n (|yi| + |y1|) ©)
2

i=1
3.3.5  Coefficient of Determination (R?)

R2 measures the proportion of variance in the dependent variable that can be explained by the independent
variable(s) [35]. The R? value ranges from 0 to 1, with higher values indicating better model performance
through greater explained variance. In social science research, an R? value from 0.51 to 0.99 is considered
indicative of a high accuracy model [36]. R? is calculated as per Equation (10).

_ 2?:1(}’1 - 37\1)2

R2=1 -
Yy —9)?

(10)

where y is the mean of the actual values.
3.3.6  Mean Absolute Scaled Error (MASE)

MASE compares model performance against a naive forecast (one-step persistence forecast) [37], making
it particularly valuable for evaluating time-series models:

lon (o
MASE = __11 i=1l%1 — il

(11)

n—1 i2lyi — Vil
MASE < 1 indicates better performance compared to the naive model, providing a scale-independent
assessment of relative predictive ability. This is especially relevant for housing demand forecasting, where
seasonal and cyclic patterns may be captured by simple persistence models.

4  RESULTS AND DISCUSSION

4.1 Model Performance Comparison

Table 3 presents the performance comparison across all five forecasting models using six complementary
evaluation metrics.

Table 3: Model performance comparison

No. Model MAE MBE RSME R? SMAPE (%) MASE
1 Linear regression 1946.97 -1946.97 1977.29 -5.17 113.98 9.46
2  Elastic Net 479.62  -235.99 532.05 0.69 12.95 0.63
3  Ridge Regression  341.73 70.11 453.14 0.77 10.76 0.45
4  XGBoost 392.22  -11791  436.35 0.77 11.48 0.97
5 RNN 295.29 170.62  341.28 0.89 8.29 0.88

The RNN model demonstrates better performance across all key indicators with the highest R?, lowest
SMAPE, lowest MAE, and lowest RMSE. This consistent phenomenon across different measurement
approaches confirms RNN's suitability for housing demand forecasting in the New Zealand context. The
model's positive bias (MBE = 170.62) indicates a tendency toward overprediction, which may be
strategically advantageous from a housing policy perspective where slight overestimation carries fewer
societal costs than underestimation.

Ridge Regression and XGBoost form a secondary performance tier with identical R? values but different
error patterns. Ridge Regression achieves lower SMAPE and superior MASE, indicating better
performance relative to both actual values and naive forecasts. Conversely, XGBoost shows slightly better
RMSE, suggesting more consistent error distribution. Their opposing bias directions—Ridge Regression's
overprediction versus XGBoost's underprediction—reveal how models with similar overall accuracy can
exhibit substantially different prediction characteristics.

Elastic Net follows with moderate performance, while Linear Regression demonstrates severe
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inadequacy with negative R? (-5.17) and very high error values across all metrics. The negative R? value
indicates that Linear Regression performs substantially worse than simply predicting the mean value for all
observations. This poor performance can be attributed to several factors: First, housing demand exhibits
strong non-linear relationships with economic indicators that simple linear models cannot capture. Second,
the presence of complex temporal dependencies in the dataset requires models that can account for
sequential patterns. Third, multicollinearity among economic indicators likely creates instability in the
coefficient estimates. Finally, the dataset contains several outliers, particularly following the COVID-19
pandemic, which disproportionately affect Linear Regression without regularization. These findings
underscore the importance of either regularization techniques (as demonstrated by the much better
performance of Ridge Regression) or advanced algorithms capable of modeling non-linear relationships for
this application.

Regarding relative performance against naive forecasting (measured by MASE), all models except Linear
Regression achieved values below 1, confirming their superiority over simple persistence forecasts. Ridge
Regression's particularly low MASE suggests it captures temporal patterns more than twice as effectively
as a naive approach, despite not being specifically designed for time-series data.

The superior performance of the RNN model indicates that the relationship between the input features
and the target variable is more complex than what a simple linear model can capture. While models such
as Elastic Net, Ridge Regression, and XGBoost perform well on general tabular datasets, they are not
inherently designed to capture sequential patterns in time-series data unless enhanced through feature
engineering. In contrast, RNNSs are built with connected neurons that retain information from previous time
steps and use it in subsequent computations. This architectural design enables RNNs to better capture
temporal dependencies, making them more suitable for time-series forecasting tasks like this one.

4.2 Prediction Results

Figure 9, Figure 10, and Figure 11 illustrate the comparison between actual values and predictions made
by Elastic Net/Ridge Regression, XGBoost, and RNN, respectively. These visualizations provide important
insights into model behavior that complement the quantitative metrics presented in Table 3.
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Figure 9: ElasticNet and Ridge Regression prediction result

The Elastic Net model shows notable discrepancies between actual and predicted values throughout both
training and test periods. This is consistent with its lower R?score and higher error metrics. While it
successfully captures the general upward trend from 2010 to 2021 and the subsequent downturn in the test
set, the model frequently underestimates peaks and overestimates troughs, contributing to its negative MBE
that indicates systematic underprediction.

Ridge Regression demonstrates improved tracking of actual values compared to Elastic Net, particularly
during volatile periods (2000-2005 and 2015-2020). This improvement aligns with its superior performance
metrics (MAE, SMAPE, and MASE). However, in the test set, Ridge Regression overestimates values in
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early 2022 before converging with actual trends by late 2023, reflecting its positive MBE.
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Figure 10: XGBoost prediction result
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Figure 11: RNN prediction result

XGBoost exhibits remarkable alignment with the training data—the prediction line almost perfectly
overlays the blue actual line throughout most of the training period. This suggests excellent in-sample
fitting, which explains its competitive R?> and RMSE values. However, this close training fit contrasts with
its notable underprediction in the test set, particularly during the initial decline phase in early 2022, aligning
with its negative MBE value.

The RNN model displays a distinct pattern compared to other models. During training, it shows smoother
predictions with less reactivity to short-term fluctuations—evidenced by the pink dashed line's more
gradual trajectory compared to the actual blue line's volatility. This suggests the model prioritizes capturing
fundamental trends over fitting noise. Despite this apparent training bias, RNN achieves the best test set
performance across all metrics, tracking the downward trend with remarkable accuracy while maintaining
appropriate sensitivity to trend changes.

It is evident that while all models successfully capture the directional change in the test period, they differ
significantly in their prediction characteristics. RNN's superior generalization despite higher training bias
suggests it successfully learned the underlying temporal patterns rather than memorizing the training data.
This balanced bias-variance tradeoff explains its consistently superior performance metrics and reinforces
its suitability for housing demand forecasting applications.

4.3 Feature Importance Analysis
Figure 12 and Figure 13 present the feature importance rankings generated by Ridge Regression and
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XGBoost, identifying key economic and demographic variables influencing housing demand in New
Zealand. Despite methodological differences, both models highlight Consumers Price Index (CPI) and
Gross Fixed Capital Formation — Residential Buildings as significant predictors. In XGBoost, CPI ranks
highest (F-score = 79), followed by Gross Fixed Capital Formation and lagged CPI, indicating inflation’s
strong non-linear influence on demand. Ridge Regression, however, assigns the highest positive coefficient
to Import Values (= 0.38), suggesting that increased imports correlate with higher housing demand, while
Estimated Migration by Direction (lag 2) has a notable negative effect (=~ -0.22), and CPI shows a moderate
negative impact (= -0.15).

These differences stem from the models’ distinct approaches: Ridge Regression, a linear model, uses
coefficients to capture magnitude and direction, potentially overemphasizing correlated features like Import
Values and GDP. XGBoost, an ensemble of decision trees, captures non-linear relationships through data
splitting, prioritizing features like CPI that frequently differentiate demand patterns. Other notable features
include Unemployment Rate (positive coefficient in Ridge, moderate F-score in XGBoost), reflecting
economic conditions’ impact on housing, and lagged GDP in XGBoost, indicating broader economic trends.
The limited influence of demographic variables like Population and Net Migration in both models suggests
stable population growth in New Zealand may reduce their predictive power.
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Figure 12: Ridge Regression feature importance assessment result

98



Authors: Dang Thanh Binh et al

0 10 20 30 40 50 60 70 80

Consumers price index (CP 1) | . 79
House sales lag_2 I 42
Gross fixed capital formation - residential buildings IEEEEEEEEGEGEGEGNGGNGGNGNG_G_G_— 24
First home mortgage rate GGG 23
Import values I 18
Private consumption expenditure G 13
Household Saving_lag_2 I 17
Estimated migration by direction_lag_1 I 16
House sales lag_1 GGG 16
Exchange rates I 16
House sales IIEEEEGG—G—_ 16
Unemployment rate I 16
Retail trade sales G 14
Private consumption expenditure_lag_2 I 13
Estimated migration by direction_lag_2 I 1?2
Gross fixed capital formation - residential buildings _lag_2 I 12
Exchange rates_lag_2 IE————— 11
Unemployment rate_lag_2 I 11
Export values_lag_1 I 10
Gross fixed capital formation - residential buildings_lag_1 I 10
Export values_lag_2 I 9
Export values I ©
Household Saving N 3
First home mortgage rate_lag_1 I 7
Retail trade sales_lag_2 N 7
Exchange rates_lag_1 I 6
Import values_lag_2 I 6
Household Saving_lag_1 I 6
Production-based gross domestic product (GDP) I 6
Unemployment rate_lag_1 I 5
Wholesale trade sales_lag_1 . 5

Estimated migration by direction I 5
Figure 13: XGBoost feature importance assessment result

4.4 Summary of Findings

The dominance of the RNN model aligns with prior research on housing demand forecasting, such as
[18] and [6]. However, studies like [19] and [38] show variation in model effectiveness, often influenced
by differences in dataset size, feature sets, time frames, and observation frequency. These variations point
to the localized nature of housing demand, which can differ significantly across countries and regions.
Economic and demographic indicators may impact housing demand in different ways depending on the
regional context, including factors such as economic conditions and population structure.

Feature importance analysis revealed diverse drivers of housing demand in New Zealand: economic
factors like CPI, Gross Fixed Capital Formation — Residential Buildings, Import Values, and
Unemployment Rate were prominent, reflecting the role of inflation, construction activity, trade, and
economic conditions. Demographic variables (Population, Net Migration) showed limited impact, likely
due to New Zealand’s stable population growth during the study period, lacking dramatic shifts like rapid
growth or overpopulation seen elsewhere.

4.5 Limitations
While advanced models like RNNs achieve superior prediction accuracy, they present significant
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interpretability challenges. The “black box™ nature of neural networks—with multiple hidden layers and
complex interconnections—makes it difficult to assess feature importance, limiting causal insights.
Similarly, feature importance assessment using Ridge Regression and XGBoost has limitations: Ridge
coefficients may overemphasize correlated features such as Import Values and GDP, while XGBoost’s F-
scores lack directionality and are sensitive to dataset size.

Another limitation lies in the dataset's modest size (117 quarterly observations) that may affect long-term
forecasting accuracy due to error accumulation, particularly when forecasts rely on prior predictions. Future
research could integrate additional features such as seasonality indicators, long-term trends, or enhanced
lag features to improve extended forecasting performance. Second, the quarterly frequency may limit the
model's ability to capture rapid market fluctuations, potentially reducing responsiveness to sudden changes.
More granular time intervals could improve detection of short-term market dynamics. Third, the national-
level data provides a general overview but may not accurately represent conditions in specific cities or
regions where economic and population dynamics vary considerably. Regional datasets would enable more
targeted insights and support location-specific policy decisions.

5 CONCLUSION

This study investigated the relationships between economic and demographic indicators and housing
demand in New Zealand, evaluating five ML algorithms for forecasting accuracy using six complementary
metrics (R?, SMAPE, MAE, RMSE, MBE, MASE). The RNN model outperformed others across most
metrics, underscoring the importance of temporal modeling in capturing complex sequential relationships
for housing demand forecasting. The feature importance analysis identified economic factors like CPI,
construction investment, import values, and unemployment as key drivers, while demographic indicators
had minimal impact due to New Zealand’s stable population growth. The divergent rankings between linear
(Ridge Regression) and tree-based (XGBoost) models highlight the value of multiple approaches in
understanding complex economic relationships. These findings address a critical research gap in housing
demand forecasting in New Zealand, offering policymakers valuable tools to tackle the country’s housing
crisis—described as “among the most unaffordable” markets globally due to supply shortages [39]. Insights
into key drivers like inflation and import values can inform strategies to balance housing supply and
demand. Future research should explore expanding dataset dimensions, developing hybrid models,
enhancing neural network interpretability, and integrating advanced error analysis to better understand
model behavior, ultimately providing more actionable insights for addressing New Zealand’s housing
challenges.
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DU BAO NHU CAU NHA O NEW ZEALAND: SO SANH CAC MO HINH ELASTIC
NET, XGBOOST VA RNN

Tom tat. Dy bao nhu cdu nha ¢ 1a mot chu dé nghién ctru phf) bién trén toan cau, v4i cac cong trinh cha
yéu st dung cac phuong phap kinh té luong truyén théng. Ung dung cua may hoc trong linh vyc nay Van
con han ché, dic biét 1a trong bdi canh New Zealand. Nghién ciru nay giai quyét van dé do bang cach trién
khai cadc mé hinh Elastic Net, XGBoost va Recurrent Neural Network dé du doan nhu ciu nha & dan dung
tai New Zealand bﬁng cach st dung dir liéu kinh té va nhan khéau hoc tr nim 1995 dén hién nay. Ca&c mé
hinh dugc danh gia bang cach st dung 6 chi s6 hiéu ning (R?, SMAPE, MAE, RMSE, MBE va MASE),
v&i md hinh RNN dat duoc do chinh x4c cao nhat. Két qua thi nghiém chirng minh r?mg cac thuat toan hoc
may cai thién dang ké du bao nhu cau nha ¢ voi cac mo hinh chudi thoi gian vuot trdi hon cac phuong phép
t1ep cén truyén thong. Két qua phén tich tim ‘quan trong cua cac thudc tinh da xac dinh chi so gia tiéu dung,
dau tu cho xay dung, gia tri nhap khau va that nghiép la cac dong luc chinh, trong khi cac yéu to nhan khau
hoc cho thdy tac dong han ché trong viéc thic day nhu ciu nha ¢. Nhing phat hién nay cung cap thong tin
¢6 gia tri cho cac nha hoach dinh chinh sach va cac cong ty xdy dung giai quyét cac thach thirc vé nha &
cia New Zealand. Céc Nghién ctru trong tuong lai nén tap trung vao viéc mo rong kich thude tép dir licu
va trién khai cac ky thuat t6i uu héa cling nhu cung cip cac phuong cach dién giai tién tién hon dé tinh
chinh cac m6 hinh nay.

Tir khéa. May hoc, Mang no-ron, Nhu cau nha ¢, M hinh du bao, Phan tich chudi thoi gian.
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