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Abstract. Forecasting housing demand has been a prevalent research focus globally, primarily employing 

traditional econometric methods. However, the application of machine learning in this domain remains 

limited, particularly in the New Zealand context. This study addresses this gap by implementing Elastic 

Net, XGBoost, and Recurrent Neural Network models to predict residential housing demand in New 

Zealand using historical economic and demographic data from 1995. The models were evaluated using a 

comprehensive framework of six complementary metrics (R2, SMAPE, MAE, RMSE, MBE, and MASE), 

with the RNN model achieving the highest accuracy. Results demonstrate that machine learning algorithms 

significantly enhance housing demand forecasting, with temporal models outperforming traditional 

approaches. The analysis of feature importance identified CPI, construction investment, import values, and 

unemployment as key drivers, while demographic factors showed limited impact on housing demand. These 

findings provide valuable insights for policymakers and construction firms addressing New Zealand's 

housing challenges. Future research should expand dataset dimensions and improve model interpretability. 

Keywords. Machine Learning, Neural Networks, Housing Demand, Forecasting Models, Time Series 

Analysis 

1 INTRODUCTION 

New Zealand faces a critical housing crisis, where construction—the nation’s fifth-largest industry, 

contributing 6.3% to GDP [1]—struggles to meet growing demand, resulting in an unaffordable market [2]. 

The housing market faces two predominant concerns: rising prices and the imbalance between demand and 

supply [3]. While housing price prediction has been extensively researched, studies focusing on residential 

construction demand remain scarce, particularly in New Zealand, exacerbating the challenges of addressing 

supply shortages that adversely affect vulnerable populations mentally and physically [4]. 

Accurate forecasting of housing demand is essential to guide policymakers, suppliers, developers, and 

contractors in planning and mitigating these issues. However, traditional econometric methods, widely used 

for housing demand forecasting globally [5], often fail in dynamic markets like New Zealand. These 

methods struggle to capture complex, non-linear relationships between economic and demographic factors 

and require significant human judgment to model temporal dynamics, limiting their effectiveness [6]. 

This study proposes using machine learning (ML) to forecast housing demand in New Zealand, 

leveraging ML’s ability to automatically identify non-linear correlations and temporal patterns without 

human intervention [6]. This study applies advanced ML algorithms (Elastic Net, XGBoost, RNN) to data 

from the Reserve Bank of New Zealand to identify key demographic and economic indicators and compare 

model accuracy, aiming to determine which model delivers the best overall performance, with high R2 and 

low error values across the selected metrics. 

The rest of this paper is structured as follows. Section 2 provides a review of existing literature on 

machine learning techniques and housing demand prediction. Section 3 outlines the methodology used in 

the study. Section 4 discusses the results and offers a comparative analysis of model performance. Finally, 

the paper concludes with key findings and directions for future research. 
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2 LITERATURE REVIEW 

2.1 Machine Learning Foundations 

Machine learning represents an application of computer science that employs algorithms to develop 

statistical analysis models capable of automatic processing without continuous human intervention. These 

models generate trending patterns from input data that can predict future events or unknown indices [7]. 

ML algorithms fall into three main categories: supervised, unsupervised, and reinforcement learning. 

This research focuses specifically on supervised ML [8], which utilizes labeled datasets with predetermined 

features. In supervised learning, the researcher selects input and output features and determines data 

allocation for training and testing purposes. The models then identify patterns within the dataset and 

generate predictions for unknown values. Supervised ML encompasses two primary categories: regression 

and classification. 
2.1.1 Regression Algorithms 

Regression models [9] are trained on numerical datasets to uncover patterns in input data and predict 

continuous dependent variable values. This study employs the following regression algorithms: 

2.1.1.1 Elastic Net 

Elastic Net [10] integrates the advantages of both Lasso and Ridge Regression, with a penalty function that 

combines both approaches: 

 

 𝑝(β) = λ1 ∑ β𝑗
2𝑚

𝑗=1
+ λ2 ∑ |β𝑗|𝑚

𝑗=1
 (1) 

This algorithm evaluates parameters of correlated variables collectively, determining whether to retain 

or remove them based on their collective impact on the target variable, thereby enhancing prediction 

accuracy. 

2.1.1.2 XGBoost 

XGBoost (eXtreme Gradient Boosting) [11] employs decision tree methods and gradient boosting 

frameworks [12]. It operates by minimizing residual sums with hyperparameters to prevent overfitting: 

 𝑂𝑏𝑗 = ∑(𝑦𝑖 − 𝑦𝑖̂)
2

𝑛

𝑖=1

+ γ𝑇 +
1

2
λω2 (2) 

where γ represents the regularization parameter for leaf numbers, 𝑇 denotes tree leaf count, λ is the leaf 

weight parameter, and ω is individual leaf weight. 

XGBoost begins with an initial random prediction and sequentially builds trees, with each subsequent 

tree aiming to minimize preceding errors. The final output combines the initial prediction with outputs from 

all trees, scaled by a learning rate: 

 𝑦𝑖̂ = 𝑦𝑖
0̂ + θ ∑ 𝑓𝑚(𝑥𝑖)

𝑀

𝑚=1

 (3) 

where θ represents the learning rate controlling new tree contributions to the final prediction. 

2.1.1.3 Recurrent Neural Networks (RNN) 

RNNs [13], a fundamental artificial neural network (ANN) model, incorporate feedback loops where 

previous hidden neuron outcomes inform subsequent neurons, aiming to minimize output-target 

differences. The hidden state ht is expressed as: 

 ht = tanh(Whxt + Uhht−1 + bh) (4) 

where Wh and Uh are weight matrices, xt is the input at time step 𝑡, ht−1 is the hidden state of the previous 

time step, bh is the bias parameter, and tanh serves as the activation function. 
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Figure 1: Structure of artificial neural networks and recurrent neural networks 

2.2 Related Research 

2.2.1 Traditional Econometric Methods 

Before the widespread adoption of ML predictive models, researchers employed various traditional 

techniques such as AutoRegressive Integrated Moving Average (ARIMA), Box-Jenkins, and panel data 

analysis. These methods continue to be used alongside ML models. Studies by [14] and [15] developed 

models forecasting private housing demand in various Turkish cities using econometric methods. Both 

studies were limited by the number of independent variables they could incorporate. Additionally, 

significant human intervention in selecting statistical functions limited their ability to handle complex 

models, a disadvantage that machine learning approaches typically overcome. 

Goh [6] compared the accuracy of ANN and Box-Jenkins forecasting models for housing demand in 

Singapore from 1975 to 1994. The ML model demonstrated 15% greater precision than the econometric 

approach, attributed to ANN's capacity to automatically establish non-linear correlations between variables 

without human intervention. Similarly, Box-Jenkins was outperformed by ANNs and support vector 

machines in forecasting construction work gross values in Hong Kong using univariate datasets from 1983 

to 2014 [16], [17]. 
2.2.2 Machine Learning Models 

ML-based forecasting models have demonstrated improvements over traditional econometric methods 

by reducing human judgment in pattern evaluation. ANN exemplified this advantage by outperforming 

Box-Jenkins in forecasting construction work gross values in Hong Kong using 1983-2014 data [17]. While 

proving ML algorithms' superiority, the study was limited by using only univariate time series data without 

incorporating additional features. 

Several years later, the study at [18] confirmed ANN's effectiveness for multivariate time series analysis. 

In forecasting housing sales in a Turkish city, ANN achieved an R2 value of 0.94, surpassing Support Vector 

Machine, Linear Regression, Gaussian Process Regression, and Regression Tree models. The study 

employed seven economic indicators but omitted demographic features from housing demand analysis. 

The authors of [19] conducted comprehensive research on residential construction demand forecasting in 

Jordan using 23 economic indicators collected from January 2007 to March 2022. Unlike [18], this study 

introduced a hybrid linear-based model (Elastic-Net) that achieved the highest accuracy among 11 

algorithms evaluated, including ANN. Interest rates were identified as the dominant factor affecting 

Jordanian housing demand. However, the study focused exclusively on economic indicators, neglecting 

potentially beneficial demographic features. 

2.3 Research Gaps 

2.3.1 Dataset Limitations 

Many housing demand forecasting studies are constrained by limited feature numbers. For instance, Lam 

and Oshodi [17] employed a univariate dataset (total real estate gross sales) to forecast Hong Kong housing 

demand. While single-feature datasets simplify processes and accommodate limited data sources, they risk 

overfitting and may inadequately reflect real-world scenarios where multiple factors interact complexly 

[20]. Univariate models frequently miss important correlations and patterns captured in multiple-input 
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models. 

Additionally, some studies exclude demographic indicators from predictive models. For example, Emec 

and Tekin [18] used economic features (interest rate, consumer confidence, consumer price, and 

construction confidence indexes) to forecast housing demand in Konya City, Turkey, but excluded 

demographic indicators such as population, migration, and age structure. Conversely, Hong [2] emphasized 

demographic features when addressing New Zealand's housing shortage. 
2.3.2 ML Algorithm Limitations 

It is noted in [6] that advanced algorithms like XGBoost and ANN present interpretability challenges due 

to their “black box” nature, particularly when explanations are required. High dimensionality and complex 

internal representations complicate clear mechanism interpretation for stakeholders unfamiliar with 

machine learning concepts. Developing methods for deeper interpretation of ANN operations represents a 

significant area for future research. 

Furthermore, most studies employ basic ANNs not specifically designed for sequential time series data 

[21]. Basic ANNs (Feedforward Neural Networks) cannot effectively determine how preceding data 

influence subsequent points and final results. Advanced ANNs like RNNs and Long Short Term Memory 

networks (LSTM) address this limitation by incorporating memory or recurrent networks from previous 

inputs [21]. Implementing these advanced ANNs in housing demand forecasting could improve accuracy 

for time-series data analysis. 

3 METHODOLOGY 

This research applies machine learning algorithms to develop multiple forecasting models aimed at 

predicting housing demand. In addition, it leverages feature importance assessment techniques to interpret 

the influence of individual input features on the predicted demand. Figure 2 presents a flowchart illustrating 

the general steps involved in a typical machine learning project. The process includes seven key stages, 

forming a cyclical workflow in which steps may be revisited for refinement or additional data collection, 

depending on the results obtained during the testing and evaluation phase. The cycle begins with data 

collection and concludes with the development of a reliable predictive model and the insights derived from 

it. 

 

Figure 2: Overall machine learning workflow 

3.1 Data Collection and Preprocessing 

This study utilizes longitudinal data on New Zealand's demographic and economic indicators from the 

Reserve Bank of New Zealand database at https://www.rbnz.govt.nz/statistics/series/data-file-index-page. 

The dataset includes quarterly measurements from various macroeconomic indicators recorded primarily 

since the 1990s to September 2024 and published openly for the purpose of research and education. The 

database is categorized into separate series including exchange and interest rate, lending and monetary 

statistics, NZ debt securities, Household, and Economy indicators, etc. Each series contains different titles 

(or indicators) marked by a single code. From the complete database, we selected 16 indicators based on 

their demonstrated influence on construction industry in general and on residential housing demand in 

specific, as stated and utilized in previous research [22], [23] . Table 1 shows the indicators that were 

extracted from the database for the use of this research. 
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Table 1: Dataset features 

No Indicators Code Period Unit Peridiocity Category 

1 Population M12 03/1991-09/2024 Quarterly Number Demography 

2 Migration M12 03/2000-09/2024 Quarterly Number Demography 

3 Consumers Price Index (CPI) M1 03/1991-09/2024 Index Quarterly Economy 

4 Private consumption 

expenditure 

M2 09/1995-09/2024 NZDm Quarterly Economy 

5 Number of building consent 

(Target) 

 
03/1993-09/2024 Number Quarterly Economy 

6 Gross fixed capital formation 

- Residential buildings 

M3 03/1993-09/2024 NZDm Quarterly Economy 

7 Domestic trade - Retail M4 12/1992-09/2024 NZDm Quarterly Economy 

8 Domestic trade - Wholesale M4 12/1992-09/2024 NZDm Quarterly Economy 

9 GDP M5 06/1987-06/2024 NZDm Quarterly Economy 

10 National and household 

saving 

M6 1972-2023 NZDm Yearly Economy 

11 Import Volume M8 03/1990-09/2024 NZDm Quarterly Economy 

12 Export Volume M8 03/1990-09/2024 NZDm Quarterly Economy 

13 Unemployment rate M9 03/1994-09/2024 % Quarterly Economy 

14 House sales and price index M10 03/1990-06/2024 Number Quarterly Economy 

15 Mortgage interest rate B20 02/1964-11/2024 % Monthly Economy 

16 Exchange rate NZD/USD B1 06/1973-11/2024 NZD/USD Monthly Economy 

 

Table 1 shows that some indicators have data before 1995, but collection was inconsistent, with varying 

and missing values. To ensure consistency across all features, we selected quarterly data from September 

1995 to September 2024, yielding 117 observations, using earlier data only for calculating lagged features 

where available. The final dataset comprises 15 independent variables including Population, Net Migration, 

Consumers Price Index (CPI), Private Consumption Expenditure, Gross Fixed Capital Formation - 

Residential Buildings, Domestic Trade (Retail and Wholesale), GDP, National and Household Savings, 

Import and Export Volumes, Unemployment Rate, House Sales and Price Index, Mortgage Interest Rate, 

and Exchange Rate NZD/USD. The target variable is the Number of Building Consents. 
3.1.1 Exploratory Data Analysis (EDA) 

Figure 3 presents a heat map [24] displaying the correlation coefficients among various economic 

indicators. The values in the matrix range from -1 to 1, representing both the strength and direction of linear 

relationships between pairs of variables. Notably, there is a strong positive correlation (0.84) between the 

Number of Building Consents and Gross Fixed Capital Formation – Residential Building, indicating that 

these two indicators tend to move in tandem. In contrast, a moderate negative correlation (-0.57) exists 

between building consents and the unemployment rate, suggesting that higher unemployment is associated 

with a decline in the number of building consents issued. Other variables exhibit weak or negligible 

correlations, such as the association between house sales to other households and household savings, which 

shows a low coefficient of 0.12, implying no significant linear relationship. 
3.1.2 Data Cleaning 

3.1.2.1 Missing data 

There was no net migration data collected before 2000. Since the number of rows is quite limited, instead 

of removing those data points, mean value will be filled in those voids (approximately 6,406). This 

technique is simple but does not reflect the fluctuation of data within that period especially in the context 

of temporal dataset [25]. The study chose this option to reduce data preprocessing time. However, future 

studies can improve this using other advanced technique such as Denoising Autoencoder [26]. 
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Figure 3: Feature correlation 

3.1.2.2 Outliers 

Outliers are observed in wholesale trade volumes, household savings, and residential housing consents. 

Figure 4 illustrates these three variables, all of which show a noticeable peak following the COVID-19 

lockdown in 2021. The timing of these outliers aligns across variables, suggesting they are the result of a 

rare and significant event rather than data errors. One explanation, supported by several studies, is that 

during the pandemic, people tended to increase their savings as a precautionary response. However, 

following the rollout of vaccinations, many households began spending these accumulated savings, leading 

to the sharp peak observed in the household savings data [27]. 

To mitigate the effect of these outliers on prediction accuracy, while preserving their contribution as 

significant events, the original values were retained to reflect the impact of exceptional circumstances such 

as the Covid-19 pandemic. However, for linear ML algorithms including linear regression and Elastic Net, 

extreme values can substantially distort results. To address this challenge, the Winsorization technique [28] 

was implemented. Winsorization manages outliers by capping extreme values at specified percentiles (the 

5th and 95th percentiles in this study) rather than completely removing them, thereby preserving their 

statistical significance while reducing their disproportionate influence. 
3.1.3 Data Transformation 

Each feature is scaled to a range between 0 and 1 by utilizing Min-Max normalization, which is calculated 

based on the feature’s minimum and maximum values. This practice offers two main benefits: (1) it helps 

mitigate prediction distortion caused by extreme outliers, and (2) it reduces computational time, as the 

algorithms no longer need to process variables with differing scales and units. The mathematical 
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formulation for Min-Max normalization is shown in Equation (5). 

 xnorm  =  
x − xmin

xmax − xmin
 (5) 

 

 

Figure 4: Outliers of 3 variables recorded at the same period 

3.1.4 Feature Engineering 

This study applies a feature engineering technique known as lagged features [29]. This technique is 

particularly useful for sequential time series datasets, as it divides the data into time frames. Each time 

frame contains a set of time steps used as input to predict the next value. The frame then shifts forward, and 

the process repeats, ensuring that previous data points are incorporated into the final predictive results. 

Since the dataset in this study is collected quarterly, lagged features are tested with values such as 2, 4, 8, 

and so on, until the model achieves the highest R2 score. As such, this step also serves as part of the model 

tuning process. 

 

Figure 5: Example of lagged features 

This approach is beneficial for time series analysis because it incorporates temporal sequences into 

training and captures how past values influence future outcomes. It is particularly useful for models like 

linear regression, Elastic Net, and XGBoost, which do not inherently handle sequential data. In the context 

of economics, changes in an indicator may not have an immediate effect on the number of building consents. 

Instead, the impact may appear after a certain time lag. Lagged features are used here to reflect that delayed 

influence of one variable on another. 
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3.2 Model Development and Training 

The research employed five ML algorithms: Linear Regression (baseline), Elastic Net, Ridge Regression, 

XGBoost, and RNN. The data was split in a 90:10 ratio for training and testing, with December 2021 serving 

as the split milestone. Figure 6 shows this partition, with the period before the milestone forming the 

training set and the remainder serving as the test set according to time sequence. 

This 90:10 ratio, while not generally optimal for model evaluation, was selected due to the dataset's 

relatively small size. Allocating 90% for training ensured sufficient data points for effective learning. 

Additionally, the December 2021 milestone coincides with the peak of building consents before a 

significant decline, providing an ideal test case for the models' ability to predict substantial trend changes. 

This point also helps isolate the extreme effects of the COVID-19 event while testing the models' capability 

to identify the subsequent downward trend. 

 

Figure 6: Train-test data split showing December 2021 milestone 

For model validation, time-series cross-validation was implemented to prevent optimistically biased 

results common with traditional cross-validation methods applied to temporal data. As shown in Figure 7, 

unlike conventional cross-validation, time-series cross-validation ensures validation sets chronologically 

follow training sets, better simulating real-world forecasting conditions where future data remains 

unavailable during model training. 

 

Figure 7: Traditional vs. time-series cross-validation approaches 

3.2.1 XGBoost Training Process 

The XGBoost model training proceeded through three distinct stages. Initially, the entire training set was 

fitted to a basic XGBoost model with randomly selected parameters to establish feature importance 

rankings. Next, the model was repeatedly trained with progressively reduced feature sets, with each iteration 
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eliminating less important features based on their previously determined importance scores. Table 2 

presents selected results from this iterative process, highlighting that optimal performance (R2 = 75.26%) 

was achieved with 24 features at a threshold value of 0.004. 

Table 2: XGBoost feature selection results (selected values) 

Threshold Number of Features (n) R2 (%) 

0.000 48 14.23 

0.000 42 58.70 

0.004 27 -34.27 

0.004 25 -14.28 

0.004 24 75.26 

0.005 23 39.67 

0.006 19 54.12 

0.066 4 -62.89 

0.244 2 9.54 

 

In the final stage, these 24 optimal features were used to train the refined model with hyperparameter 

tuning, including number of trees (n_estimators =  10,000), maximum tree depth (max_depth = 7), and 

learning rate (learning_rate =  0.3). This hyperparameter optimization further improved the R2 score from 

0.75 to 0.77. 
3.2.2 RNN Architecture and Training 

The RNN model architecture, illustrated in Figure 8, is designed to predict housing demand using a 

structure with four layers: an input layer, two hidden layers, and an output layer. The input layer receives 

the data, which is processed by the first hidden layer (200 neurons) and the second hidden layer (100 

neurons) to identify patterns. The output layer then produces a single prediction for the Number of Building 

Consents. To prepare the data for the RNN, we organized it into a 3D array with the shape [None, 1, 48]. 

“None” represents the number of quarters in the training set (flexible for any size), “1” means we use data 

from one quarter at a time, and “48” is the number of features. These 48 features come from 16 variables—

15 economic and demographic indicators from Table 1, plus the Number of Building Consents—each 

including its current value and two previous values (lags). This results in 16 × 3 =  48 features, allowing 

the RNN to use past and present data to forecast future housing demand. 

 

Figure 8: RNN model architecture 

For the RNN model, the tanh activation function was selected for both hidden layers to capture non-

linear relationships between variables and mitigate the vanishing gradient problem that commonly affects 
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sequential data processing. The output layer employed a linear activation function, appropriate for 

regression tasks where predictions need not be bounded within a specific range. The model used the Adam 

optimizer [30], chosen for its computational efficiency and effectiveness with non-convex loss functions 

typical in neural networks. 
3.2.3 Elastic Net and Ridge Regression Tuning 

Hyperparameter tuning for the Elastic Net model explored multiple parameter combinations, including: 

 Number of iterations: 1000, 1100, 1200 

 Regularization strength (α): 0.01, 0.1, 0.5, 1.0, 5, 10.0 

 L1/L2 ratio: 0, 0.01, 0.05, 0.1, 0.2, 0.4, 0.6, 0.8, 1 

 Time series cross-validation splits: 4, 8, 12, 16, 24 

Optimal performance (R2 = 0.69, SMAPE = 12.95%) was achieved with 1100 iterations, α = 0.01, L1/L2 

ratio = 0, and 24-fold cross-validation. Notably, the L1/L2 ratio of 0 effectively transformed the model into 

pure Ridge Regression, prompting a separate investigation of Ridge Regression with focused regularization 

strength values (𝛼 = 0.01, 0.05, 0.1, 0.5, 1). This Ridge Regression model achieved R2 = 0.77 with 𝛼 = 0.01, 

outperforming the initial Elastic Net implementation. 

3.3 Evaluation Metrics 

This study uses a set of complementary evaluation metrics to assess model accuracy from different 

angles. Each metric captures a specific aspect of prediction quality, allowing for a more complete 

understanding of model performance. Together, they address both absolute and relative accuracy, account 

for scale-dependent and scale-independent measures, and reflect varying sensitivity to error patterns. 
3.3.1 Mean Absolute Error (MAE) 

MAE [31] measures the average magnitude of errors without considering their direction, making it 

particularly useful for housing demand forecasting where the absolute scale of prediction errors directly 

impacts planning decisions. Lower MAE values indicate better model performance. 

 
MAE =

1

𝑛
∑|𝑦𝑖 − 𝑦𝑖̂|

𝑛

𝑖=1

 (6) 

where yi is the actual value and yî is the predicted value. 
3.3.2 Mean Bias Error (MBE) 

MBE [32] reveals systematic biases in predictions, indicating whether a model consistently over- or 

under-predicts housing demand: 

 
MBE =

1

n
∑(yî − yi)

n

i=1

 (7) 

A positive MBE indicates overprediction while negative values show underprediction. While MBE = 0 

suggests no overall bias, errors may still be large but offset each other, necessitating analysis alongside 

other metrics. 
3.3.3 Root Mean Squared Error (RMSE) 

RMSE, widely used in forecasting literature [31], [33], provides an error measure in the same units as 

the original data: 

 

RMSE = √
1

n
∑(yi − yî)

2

n

i=1

 (8) 

RMSE emphasizes larger errors because of its squared term, making it ideal for housing demand 

forecasting where significant prediction errors can lead to major economic impacts. However, its sensitivity 

to outliers requires thorough preprocessing when extreme values occur. 
3.3.4 Symmetric Mean Absolute Percentage Error (SMAPE) 

SMAPE, initially defined by [34], expresses errors as percentages, making it easier to interpret and 

compare results across different datasets. This is especially useful when presenting findings to 

policymakers. Its value ranges from 0% to 200%, with 0% indicating a perfect fit and 200% representing 
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extremely poor model performance. Equation (9) describes how SMAPE is calculated. 

 SMAPE =
100%

n
∑

|yi − yî|

(
|yi| + |yî|

2
)

n

i=1

 (9) 

3.3.5 Coefficient of Determination (R2) 

R2 measures the proportion of variance in the dependent variable that can be explained by the independent 

variable(s) [35]. The R2 value ranges from 0 to 1, with higher values indicating better model performance 

through greater explained variance. In social science research, an R2 value from 0.51 to 0.99 is considered 

indicative of a high accuracy model [36]. R2 is calculated as per Equation (10). 

 R2 = 1 −
∑ (yi − yî)

2n
i=1

∑ (yi − y̅)2n
i=1

 (10) 

where y̅ is the mean of the actual values. 
3.3.6 Mean Absolute Scaled Error (MASE) 

MASE compares model performance against a naïve forecast (one-step persistence forecast) [37], making 

it particularly valuable for evaluating time-series models: 

 

MASE =

1
n

∑ |yî − yi|
n
i=1

1
n − 1

∑ |yi − yi−1|n
i=2

 (11) 

MASE < 1 indicates better performance compared to the naïve model, providing a scale-independent 

assessment of relative predictive ability. This is especially relevant for housing demand forecasting, where 

seasonal and cyclic patterns may be captured by simple persistence models. 

4 RESULTS AND DISCUSSION 

4.1 Model Performance Comparison 

Table 3 presents the performance comparison across all five forecasting models using six complementary 

evaluation metrics. 

Table 3: Model performance comparison 

No. Model MAE MBE RSME R2 SMAPE (%) MASE 

1 Linear regression 1946.97 -1946.97 1977.29 -5.17 113.98 9.46 

2 Elastic Net 479.62 -235.99 532.05 0.69 12.95 0.63 

3 Ridge Regression 341.73 70.11 453.14 0.77 10.76 0.45 

4 XGBoost 392.22 -117.91 436.35 0.77 11.48 0.97 

5 RNN 295.29 170.62 341.28 0.89 8.29 0.88 

 

The RNN model demonstrates better performance across all key indicators with the highest R2, lowest 

SMAPE, lowest MAE, and lowest RMSE. This consistent phenomenon across different measurement 

approaches confirms RNN's suitability for housing demand forecasting in the New Zealand context. The 

model's positive bias (MBE = 170.62) indicates a tendency toward overprediction, which may be 

strategically advantageous from a housing policy perspective where slight overestimation carries fewer 

societal costs than underestimation. 

Ridge Regression and XGBoost form a secondary performance tier with identical R2 values but different 

error patterns. Ridge Regression achieves lower SMAPE and superior MASE, indicating better 

performance relative to both actual values and naïve forecasts. Conversely, XGBoost shows slightly better 

RMSE, suggesting more consistent error distribution. Their opposing bias directions—Ridge Regression's 

overprediction versus XGBoost's underprediction—reveal how models with similar overall accuracy can 

exhibit substantially different prediction characteristics. 

Elastic Net follows with moderate performance, while Linear Regression demonstrates severe 
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inadequacy with negative R2 (-5.17) and very high error values across all metrics. The negative R2 value 

indicates that Linear Regression performs substantially worse than simply predicting the mean value for all 

observations. This poor performance can be attributed to several factors: First, housing demand exhibits 

strong non-linear relationships with economic indicators that simple linear models cannot capture. Second, 

the presence of complex temporal dependencies in the dataset requires models that can account for 

sequential patterns. Third, multicollinearity among economic indicators likely creates instability in the 

coefficient estimates. Finally, the dataset contains several outliers, particularly following the COVID-19 

pandemic, which disproportionately affect Linear Regression without regularization. These findings 

underscore the importance of either regularization techniques (as demonstrated by the much better 

performance of Ridge Regression) or advanced algorithms capable of modeling non-linear relationships for 

this application. 

Regarding relative performance against naïve forecasting (measured by MASE), all models except Linear 

Regression achieved values below 1, confirming their superiority over simple persistence forecasts. Ridge 

Regression's particularly low MASE suggests it captures temporal patterns more than twice as effectively 

as a naïve approach, despite not being specifically designed for time-series data. 

The superior performance of the RNN model indicates that the relationship between the input features 

and the target variable is more complex than what a simple linear model can capture. While models such 

as Elastic Net, Ridge Regression, and XGBoost perform well on general tabular datasets, they are not 

inherently designed to capture sequential patterns in time-series data unless enhanced through feature 

engineering. In contrast, RNNs are built with connected neurons that retain information from previous time 

steps and use it in subsequent computations. This architectural design enables RNNs to better capture 

temporal dependencies, making them more suitable for time-series forecasting tasks like this one. 

4.2 Prediction Results 

Figure 9, Figure 10, and Figure 11 illustrate the comparison between actual values and predictions made 

by Elastic Net/Ridge Regression, XGBoost, and RNN, respectively. These visualizations provide important 

insights into model behavior that complement the quantitative metrics presented in Table 3. 

 

Figure 9: ElasticNet and Ridge Regression prediction result 

The Elastic Net model shows notable discrepancies between actual and predicted values throughout both 

training and test periods. This is consistent with its lower R2 score and higher error metrics. While it 

successfully captures the general upward trend from 2010 to 2021 and the subsequent downturn in the test 

set, the model frequently underestimates peaks and overestimates troughs, contributing to its negative MBE 

that indicates systematic underprediction. 

Ridge Regression demonstrates improved tracking of actual values compared to Elastic Net, particularly 

during volatile periods (2000-2005 and 2015-2020). This improvement aligns with its superior performance 

metrics (MAE, SMAPE, and MASE). However, in the test set, Ridge Regression overestimates values in 
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early 2022 before converging with actual trends by late 2023, reflecting its positive MBE. 

 

Figure 10: XGBoost prediction result 

 

Figure 11: RNN prediction result 

XGBoost exhibits remarkable alignment with the training data—the prediction line almost perfectly 

overlays the blue actual line throughout most of the training period. This suggests excellent in-sample 

fitting, which explains its competitive R2 and RMSE values. However, this close training fit contrasts with 

its notable underprediction in the test set, particularly during the initial decline phase in early 2022, aligning 

with its negative MBE value. 

The RNN model displays a distinct pattern compared to other models. During training, it shows smoother 

predictions with less reactivity to short-term fluctuations—evidenced by the pink dashed line's more 

gradual trajectory compared to the actual blue line's volatility. This suggests the model prioritizes capturing 

fundamental trends over fitting noise. Despite this apparent training bias, RNN achieves the best test set 

performance across all metrics, tracking the downward trend with remarkable accuracy while maintaining 

appropriate sensitivity to trend changes. 

It is evident that while all models successfully capture the directional change in the test period, they differ 

significantly in their prediction characteristics. RNN's superior generalization despite higher training bias 

suggests it successfully learned the underlying temporal patterns rather than memorizing the training data. 

This balanced bias-variance tradeoff explains its consistently superior performance metrics and reinforces 

its suitability for housing demand forecasting applications. 

4.3 Feature Importance Analysis 

Figure 12 and Figure 13 present the feature importance rankings generated by Ridge Regression and 
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XGBoost, identifying key economic and demographic variables influencing housing demand in New 

Zealand. Despite methodological differences, both models highlight Consumers Price Index (CPI) and 

Gross Fixed Capital Formation – Residential Buildings as significant predictors. In XGBoost, CPI ranks 

highest (F-score = 79), followed by Gross Fixed Capital Formation and lagged CPI, indicating inflation’s 

strong non-linear influence on demand. Ridge Regression, however, assigns the highest positive coefficient 

to Import Values ( 0.38), suggesting that increased imports correlate with higher housing demand, while 

Estimated Migration by Direction (lag 2) has a notable negative effect ( -0.22), and CPI shows a moderate 

negative impact ( -0.15). 

These differences stem from the models’ distinct approaches: Ridge Regression, a linear model, uses 

coefficients to capture magnitude and direction, potentially overemphasizing correlated features like Import 

Values and GDP. XGBoost, an ensemble of decision trees, captures non-linear relationships through data 

splitting, prioritizing features like CPI that frequently differentiate demand patterns. Other notable features 

include Unemployment Rate (positive coefficient in Ridge, moderate F-score in XGBoost), reflecting 

economic conditions’ impact on housing, and lagged GDP in XGBoost, indicating broader economic trends. 

The limited influence of demographic variables like Population and Net Migration in both models suggests 

stable population growth in New Zealand may reduce their predictive power. 

 

Figure 12: Ridge Regression feature importance assessment result 
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Figure 13: XGBoost feature importance assessment result 

4.4 Summary of Findings 

The dominance of the RNN model aligns with prior research on housing demand forecasting, such as 

[18] and [6]. However, studies like [19] and [38] show variation in model effectiveness, often influenced 

by differences in dataset size, feature sets, time frames, and observation frequency. These variations point 

to the localized nature of housing demand, which can differ significantly across countries and regions. 

Economic and demographic indicators may impact housing demand in different ways depending on the 

regional context, including factors such as economic conditions and population structure. 

Feature importance analysis revealed diverse drivers of housing demand in New Zealand: economic 

factors like CPI, Gross Fixed Capital Formation – Residential Buildings, Import Values, and 

Unemployment Rate were prominent, reflecting the role of inflation, construction activity, trade, and 

economic conditions. Demographic variables (Population, Net Migration) showed limited impact, likely 

due to New Zealand’s stable population growth during the study period, lacking dramatic shifts like rapid 

growth or overpopulation seen elsewhere. 

4.5 Limitations 

While advanced models like RNNs achieve superior prediction accuracy, they present significant 
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interpretability challenges. The “black box” nature of neural networks—with multiple hidden layers and 

complex interconnections—makes it difficult to assess feature importance, limiting causal insights. 

Similarly, feature importance assessment using Ridge Regression and XGBoost has limitations: Ridge 

coefficients may overemphasize correlated features such as Import Values and GDP, while XGBoost’s F-

scores lack directionality and are sensitive to dataset size. 

Another limitation lies in the dataset's modest size (117 quarterly observations) that may affect long-term 

forecasting accuracy due to error accumulation, particularly when forecasts rely on prior predictions. Future 

research could integrate additional features such as seasonality indicators, long-term trends, or enhanced 

lag features to improve extended forecasting performance. Second, the quarterly frequency may limit the 

model's ability to capture rapid market fluctuations, potentially reducing responsiveness to sudden changes. 

More granular time intervals could improve detection of short-term market dynamics. Third, the national-

level data provides a general overview but may not accurately represent conditions in specific cities or 

regions where economic and population dynamics vary considerably. Regional datasets would enable more 

targeted insights and support location-specific policy decisions. 

5 CONCLUSION 

This study investigated the relationships between economic and demographic indicators and housing 

demand in New Zealand, evaluating five ML algorithms for forecasting accuracy using six complementary 

metrics (R2, SMAPE, MAE, RMSE, MBE, MASE). The RNN model outperformed others across most 

metrics, underscoring the importance of temporal modeling in capturing complex sequential relationships 

for housing demand forecasting. The feature importance analysis identified economic factors like CPI, 

construction investment, import values, and unemployment as key drivers, while demographic indicators 

had minimal impact due to New Zealand’s stable population growth. The divergent rankings between linear 

(Ridge Regression) and tree-based (XGBoost) models highlight the value of multiple approaches in 

understanding complex economic relationships. These findings address a critical research gap in housing 

demand forecasting in New Zealand, offering policymakers valuable tools to tackle the country’s housing 

crisis—described as “among the most unaffordable” markets globally due to supply shortages [39]. Insights 

into key drivers like inflation and import values can inform strategies to balance housing supply and 

demand. Future research should explore expanding dataset dimensions, developing hybrid models, 

enhancing neural network interpretability, and integrating advanced error analysis to better understand 

model behavior, ultimately providing more actionable insights for addressing New Zealand’s housing 

challenges. 
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DỰ BÁO NHU CẦU NHÀ Ở NEW ZEALAND: SO SÁNH CÁC MÔ HÌNH ELASTIC 

NET, XGBOOST VÀ RNN 
 

Tóm tắt. Dự báo nhu cầu nhà ở là một chủ đề nghiên cứu phổ biến trên toàn cầu, với các công trình chủ 

yếu sử dụng các phương pháp kinh tế lượng truyền thống. Ứng dụng của máy học trong lĩnh vực này vẫn 

còn hạn chế, đặc biệt là trong bối cảnh New Zealand. Nghiên cứu này giải quyết vấn đề đó bằng cách triển 

khai các mô hình Elastic Net, XGBoost và Recurrent Neural Network để dự đoán nhu cầu nhà ở dân dụng 

tại New Zealand bằng cách sử dụng dữ liệu kinh tế và nhân khẩu học từ năm 1995 đến hiện nay. Các mô 

hình được đánh giá bằng cách sử dụng 6 chỉ số hiệu năng (R2, SMAPE, MAE, RMSE, MBE và MASE), 

với mô hình RNN đạt được độ chính xác cao nhất. Kết quả thí nghiệm chứng minh rằng các thuật toán học 

máy cải thiện đáng kể dự báo nhu cầu nhà ở với các mô hình chuỗi thời gian vượt trội hơn các phương pháp 

tiếp cận truyền thống. Kết quả phân tích tầm quan trọng của các thuộc tính đã xác định chỉ số giá tiêu dùng, 

đầu tư cho xây dựng, giá trị nhập khẩu và thất nghiệp là các động lực chính, trong khi các yếu tố nhân khẩu 

học cho thấy tác động hạn chế trong việc thúc đẩy nhu cầu nhà ở. Những phát hiện này cung cấp thông tin 

có giá trị cho các nhà hoạch định chính sách và các công ty xây dựng giải quyết các thách thức về nhà ở 

của New Zealand. Các nghiên cứu trong tương lai nên tập trung vào việc mở rộng kích thước tập dữ liệu 

và triển khai các kỹ thuật tối ưu hóa cũng như cung cấp các phương cách diễn giải tiên tiến hơn để tinh 

chỉnh các mô hình này. 

 

Từ khóa. Máy học, Mạng nơ-ron, Nhu cầu nhà ở, Mô hình dự báo, Phân tích chuỗi thời gian. 
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