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Abstract. In this article, a physics-informed differential evolution approach is developed to estimate the 

nonlinear behaviors of pretensioned cable structures without using any structural analyses. Rather than 

solving nonlinear equations through conventional numerical methods, this approach employs differential 

evolution to minimize Total Potential Energy (TPE). Therein, the TPE is designed as an objective function 

to guide the searching process of the Differential Evolution (DE) algorithm. Once the minimum TPE value 

is found, the nonlinear behavior of structures can be easily obtained. Three benchmarks are examined to 

determine the efficiency of the suggested framework for geometrically nonlinear analysis of cable 

structures. The results demonstrate that the proposed approach is easy to implement and delivers high 

accuracy.  
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1 INTRODUCTION 

Cable members are frequently employed as important components in tension structures due to their 

significant structural advantages, especially in designs that require high strength, light weight, flexibility, 

and cost-effectiveness. Cable-supported bridges, power lines, and large-span roof structures are examples 

of such applications. However, this structure can lead to instability because of their significant geometric 

nonlinearity. As a result, when studying the cable net structures, the impact of large deflections must be 

carefully considered. And this presents a significant challenge that has garnered the attention of many 

researchers  

In general, many different techniques for analyzing cable structures have been presented. And these works 

were commonly classified into two classes called the stiffness-based and energy methods. Therein, the 

stiffness matrix, which was known as the first approach, was iteratively updated as the structure deforms 

due to changes in material and geometry properties. There were two alternative approaches developed to 

build the stiffness matrix of the cable elements. The first one was based on the interpolation function, and 

the other one relied on analytical expressions. The finite element method, which was known as the first 

sub-method, approximates the cable element by using interpolation polynomial functions. And this 

approach has been effectively used to estimate the nonlinear behaviors of cables. For instance, Knudson [1] 

developed a two-node element for solving static and dynamic analysis of cable-net structures. To enhance 

the accuracy, a multi-node element was introduced by Chen [2].  The two-node element was suitable for 

cables with high pretension and small sag, while the multi-node element was employed for cables with 

larger sag [3]. The second sub-approach formulated a two-node elastic catenary cable element using exact 

analytical expressions to precisely capture the behavior of cables [4, 5]. This strategy resulted in greater 

accuracy and reduced the number of degrees of freedom needed for cable structures, compared to the first 

sub-method. Despite the considerable success of stiffness-based algorithms, their limitations persisted due 

to the nonlinear incremental-iterative methods. To address these limitations, optimization algorithms were 

used to minimize energy functions. Therein, the gradient based method has been applied in the structural 

analysis. For example, Sufian [6] introduced an entropy-based optimization algorithm to find the minimum 

total potential energy stored in the structure. In addition, Lewis [7] studied the relative efficiency of dynamic 

relaxation and stiffness matrix methods to calculate the nonlinear static response of frame and pretensioned 

cable structures. Besides, a minimum principle of complementary energy was suggested by Kanno and 

Ohsaki [8] for considering the prestressed cable nets with geometrical nonlinearities and nonlinear elastic 

materials. While gradient-based frameworks achieved rapid convergence in just a few iterations, the 

derivative information was required to search for the solution. As an effective alternative to address the 

above challenge, the gradient-free algorithms can find near-optimal solutions without the need for gradient 

knowledge. And geometric nonlinearity of the cable structures was exploited using Harmony Search by 
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Toklu [9, 10]. Because of the above-mentioned advantages of metaheuristic methods, the DE algorithm has 

proven effective in tackling complex optimization problems. However, until now, it has not been used for 

the nonlinear analysis of cable systems so far. 

In this paper, a physics-informed differential evolution framework is introduced to analyze the cable 

structures. Therein, the TPE, which is known as an objective function, is minimized to estimate the 

geometrically nonlinear behaviors. The structural responses are obtained immediately after the optimization 

procedure is completed, without requiring any structural analysis. Several numerical examples for 

analyzing the geometric nonlinearity of cable net systems are examined to demonstrate the efficiency of 

the suggested approach. The obtained results showed that the proposed approach is not only simple in 

procedure, but also yields high accuracy. 

The remaining paper is organized as follows. Section 2 presents the formulation of the TPE of the cable 

structure as an optimization problem. Next, Section 3 provides the DE algorithm. And several cable 

structures are performed in Section 4 to show the effectiveness and accuracy of our method. Finally, Section 

5 draws conclusions from the obtained results of the benchmark problems.  

2 FORMULATION OF THE PROBLEM  

A cable structure is defined as a unique configuration of straight links possessing extensional stiffness. The 

external forces are applied at the nodal intersections of cables. A cable net structure with the initial 

pretension forces consisting of n joints and m cable members is considered. And its TPE is defined by 

summing the external work and strain energy, as follows [10]: 
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in which  
p , U, and W are the total potential energy, strain energy, and external work, respectively;

k kE ,A , and
0,kU refer to the Young’s modulus, cross-sectional area, and the initial strain energy of the 𝑘th 

cable member when subjected to the pretension force; 
00,k l ,k, ,  and 

ke denote the length without and with 

pretension force, and elongations resulting from the pretension force of the kth member; f and d̂ are the 

external force and displacement vectors.  

A cable kth element in space with ends coordinates ( )i i ix ,y ,z  and ( )j j jx , y ,z , as shown in Figure 1, is 

considered to build the formulation of the elongations. Therein, 
0,k

 and 
0l ,k

are defined the length of the 

cable element before and after the application of the pretension force, respectively. They are expressed as 

follows:  
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in which 0x,k j i 0y,k j i 0z,k j ix x ; y y ; z z= − = − = − ; 
0,kf  denotes the initial pretension force in the 

kth cable member.  

When the external loads are applied to the cable structure, the new length 
f ,k

 corresponding to the 

displacement field is given by:  
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f ,k fx,k fy,k fz,k ,= + +  (7) 

where fx,k 0x,k j i fy,k 0y,k j i fz,k 0z,k j i
ˆ ˆ ˆ ˆ ˆ ˆu u ; v v ; w w= + − = + − = + − ; ˆ ˆu,v, and ŵ  represent 

deflections in the x, y, and z directions at the nodal intersections.  

 

Figure 1: Deformation of a pretensioned cable member. 

It is easily be seen that the elongations before and after applying the external loads can be easily determined, 

as follows: 

 
0 l ,k0

l ,k 0,ke ,= −  (8) 

 
0k f ,k l ,ke = − . (9) 

Once the elongations are found, the TPE can be calculated by integrating external work and strain energy. 

With the deflections as design variables, the TPE serves as an objective function which is minimized by the 

DE algorithm. 

3  DIFFERENTIAL EVOLUTION 

Price and Storn [11] introduced the DE, which has been successfully proved as effective for solving 

optimization problems. And it is utilized as an optimizer to minimize the TPE of the cable structure in this 

work. The following is a summary of the basic steps in the DE algorithm. 

• Initialization 

Initially, a random population of np individuals is generated from the search space. A vector with 

m design variables  i i,1 i,2 i,m
ˆ ˆ ˆˆ d , d , ..., d=d  is the ith individual which is defined by  

                              ( )i, j min, j i, j max, j min, j
ˆ ˆ ˆ ˆd d rand 0,1 d d i 1,2,..., np; j 1,2,...,m,= + − = =    (10) 

which min, jd̂  and max, jd̂ are the lower and upper bounds of jd̂ ;  i, jrand 0,1  is a random number 

uniformly distributed over the interval. In this study, the design variables are the displacement 
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field. 

• Mutation 

Next, a mutation strategy associated with a target vector xi is applied to generate a mutant vector 

vi. There are four popular mutation operations. They are given by  

 ( )
1 2i best r r

ˆ ˆ ˆbest /1 ,F= + −v d d d  (11) 

 ( ) ( )
1 2 3 4i best r r r r

ˆ ˆ ˆ ˆ ˆbest / 2 ,F F= + − + −v d d d d d  (12) 

 ( )
1 2 3i r r r

ˆ ˆ ˆrand /1 ,F= + −v d d d  (11) 

 ( ) ( )
1 2 3 4 5i r r r r r

ˆ ˆ ˆ ˆ ˆrand / 2 ,F F= + − + −v d d d d d  (12) 

 

where r1, r2, r3, r4, and r5 are integer numbers which are selected from  1,....,i 1, i 1,...,np− + ; F 

denotes the scale factor which is randomly picked up from (0, 1]; and 
bestd̂  is the best individual 

in the population.  

Accordingly, the mutant vector vi can be violated its boundary constraint. Therefore, it needs to 

be modified to the allowable limits of the variable designs, as follows:  
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• Crossover 

Thirdly, a crossover scheme is employed to enhance the diversity of individual vectors in the 

existing population. Accordingly, a trial vector iu  is produced by the mutant vector iv  and its 

target vector 
id̂ . And it is given by  
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where Cr denotes the crossover control parameter, and K is a randomly selected integer within 

the range [1, np]. 

• Selection 

Finally, a selection scheme is applied to choose the better individuals by comparing the objective 

function values of the trial vectors ( )if u  and target vector ( )i
ˆf d  in the present population. This 

scheme is given by 

 
i i i

i

i, j

ˆif f ( ) f ( )
ˆ

ˆ otherwise.

 
= 



u u d
d

d
 (15) 



PHYSICS-INFORMED DIFFERENTIAL EVOLUTION FOR NONLINEAR ANALYSIS OF CABLE NET  

 

138 

4 NUMERICAL EXAMPLES  

In this section, three numerical examples are carried out to illustrate the effectiveness of the DE algorithm 

in analyzing the cable structures. For verification, the obtained results will be compared with the 

Backtracking Search optimization Algorithm (BSA) and the Teaching-Learning-Based Optimization 

(TLBO) for minimizing TPE. In this study, the parameters of the DE are set as follows: crossover factor Cr 

= 0.9, a maximum of 9000 evaluations, a population size of 40, mutation factor F = 0.8, and the stopping 

criterion is set to 10-6. Because of its stochastic nature, the final solution of each problem is found after ten 

runs. To allow a fair comparison of the various techniques, all problems were run on a desktop computer 

with MATLAB. 

 

 

Figure 2: Flat cable net 2 × 2 
 

4. 1 Flat cable net 

A flat cable net is considered as the first problem for the nonlinear analyses of cable net, as shown in Figure 

2. In this benchmark, all cable elements are the same Young’s modulus, cross-sectional area, and pretension 

force of 124.8 kN/mm2, 0.785 mm2, and 200 N, respectively. It is a concentrated force of P = 15 N is applied 

at free joints 4, 5, and 8 of the system. Several scholars have previously solved this cable structure using 

different algorithms, such as Toklu [9], Halvordson [12], and Kwan [13].  

A comparison of the results obtained by the DE and the other algorithms is summarized in Table 1. In this 

example, the DE obtains the best TPE (704.8130 N.mm). In addition, it (5880) requires less evaluations 

than the BSA (25120), and TLBO (10960). Clearly, the DE outperforms existing algorithms both the 

solution quality and computational cost. Besides, it is simplicity in performance without using any structural 

analysis as well as the information gradient. The TPE convergence histories obtained by the DE, BSA, and 

TLBO are shown in Figure 3. It can be easily seen that the proposed algorithm converges very fast in the 

early iterations, requiring only 5,880 iterations. In contrast, to achieve the optimal solution, the BSA and 

TLBO used 25120 and 10960, respectively.  

 

Table 1: Comparison of the obtained results for the flat cable net 

Deflections  
Toklu Halvordson Kwan Present 

[9] [12] [13] BSA TLBO DE 

u4 -0.07 -0.07 -0.08 0.071 0.070 -0.071 
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v4 -0.07 -0.07 -0.08 0.071 0.071 -0.071 

w4 12.17 12.20 12.17 12.175 12.155 12.172 

u5 0.04 0.04 0.04 -0.042 -0.042 0.041 

v5 -0.08 -0.08 -0.08 0.078 0.076 -0.078 

w5 11.18 11.20 11.18 11.188 11.183 11.184 

u8 -0.08 -0.08 -0.08 0.079 0.077 -0.077 

v8 0.04 0.04 0.05 -0.042 -0.042 0.041 

w8 11.18 11.20 11.18 11.179 11.170 11.186 

u9 -0.04 -0.04 -0.04 0.040 0.038 -0.038 

v9 -0.04 -0.04 -0.04 0.039 0.038 -0.039 

w9 5.59 5.59 5.59 5.595 5.607 5.596 

Best p 704.8458 704.8477 704.8925 704.8134 704.8143 704.8130 

Worst p - - - 704.8147 704.8157 704.8146 

Mean p - - - 704.8141 704.8148 704.8136 

No. of Eval - - - 25120 10960 5880 

 

 
Figure 3: The TPE convergence history of the flat cable net  
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Figure 4: Hyperbolic paraboloid net. 

4. 2 Hyperbolic paraboloid net 

The second numerical example deals with the hyperbolic paraboloid network shown in Figure 4. This 

system consists of 31 cables with fourteen constrained joints and other joints allowing free movement.  All 

cable elements have a uniform cross-sectional area of 0.785 mm² and a Young's modulus of 128.3 kN/mm². 

In addition, to all cable elements to obtain the initial structure geometry, all cable elements get a pretension 

force of 200 N. A vertically concentrated force of 15.7 N is exerted on the free joints, as shown in Figure 

4.  

Table 2: Comparison of displacements (mm) for hyperbolic paraboloid net system 

Node 
Toklu  Kwan  Present 

[9] [13] BSA TLBO DE 

5 19.48 19.52 20.320 18.995 19.349 

6 25.59 25.35 26.634 24.663 25.349 

7 23.17 23.31 24.308 22.316 23.040 

10 25.75 25.86 26.903 24.973 25.601 

11 33.86 34.05 35.000 32.720 33.621 

12 29.27 29.49 30.929 28.267 29.081 

15 25.65 25.79 27.119 24.490 25.357 

16 30.96 31.31 32.977 29.487 30.629 

17 21.03 21.42 23.384 19.849 20.827 

20 21.33 21.48 21.822 19.830 20.567 

21 19.67 20.00 21.642 17.736 19.791 

22 14.04 14.40 16.248 12.591 14.406 

Best p - - 1109.475 1091.391 1074.810 

Worst p - - 1110.051 1091.394 1074.812 

Mean p - - 1109.822 1091.392 1074.811 

No. of Eval.  - - 360000 198240 142240 
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As the previously presented flat cable net, Table 2 compares the solutions obtained by the DE and 

alternative algorithms. It is clear that the DE can accurately estimate the response of cable with the best 

TPE. In addition, this algorithm demonstrates efficiency compared to various algorithms when the structural 

cable becomes more complex. Specifically, the DE takes only 142240 evaluation functions, while the BSA 

and TLBO require 360000 and 198240 to achieve the solution as possible. 
 

 
Figure 5: The TPE convergence history of the hyperbolic paraboloid network 

 

Figure 6: Spatial cable network 
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4. 3 Spatial cable network 

A spatial cable structure, as depicted in Figure 6, is investigated as the last problem. This cable system 

shows mirror symmetry across both of its central axes. And it was examined by Toklu [9] and Thai [14]. 

The cable net's initial geometry is configured by applying pretension forces of 90 kN and 30 kN to the 

cables along the x- and y-axes, respectively. Young’s modulus is set to all cables. In this case, the elements 

in the x- and y-directions have cross-sectional areas of 350 mm² and 120 mm², respectively. Otherwise, a 

vertical concentrated load of 6.8 kN is applied to all free joints.  

The displacements obtained by the DE and other works are reported in Table 3. As expected, the DE found 

the smallest TPE value (6504279 N.mm) when compared to the BSA (6504295 N.mm) and TLBO 

(6504288 N.mm). Hence, our approach enhances the accuracy of the structural behaviors. Besides, it can 

be seen that the deflections found by the DE are close to the previously works with an inaccuracy of less 

than 1%. In addition, Figure 7 shows the convergence histories found by various algorithms. Clearly, the 

presented framework converges very quickly in the initial iterations. It requires the number of evaluation 

functions with only 63500, while the BSA requires a larger number of evaluations 351700.  

 

Table 3: Comparison of deflections (mm) for spatial net structure 

Deflections 
Lewis  Thai Toklu Present 

[7] [14] [9] BSA TLBO DE 

u7 -5.14 -5.03 -5.03 -5.130 -5.040 -5.030 

v7 0.42 0.41 0.40 0.400 0.399 0.398 

w7 30.41 29.86 29.46 29.461 29.452 29.451 

u8 -2.26 -2.23 -2.22 -2.215 -2.235 -2.225 

v8 0.47 0.46 0.39 0.400 0.395 0.393 

w8 17.70 17.29 17.08 17.978 17.100 17.098 

u9 0 0 0 0.000 0.000 0.000 

v9 -2.27 -2.31 -3.12 -2.368 -2.366 -2.356 

w9 -3.62 -3.61 -3.19 -3.200 -3.200 -3.199 

u14 -4.98 -4.92 -4.92 -4.9528 -4.9336 -4.9207 

v14 0 0 0 0.000 0.000 0.000 

w14 43.49 42.85 42.84 42.863 42.845 42.828 

u15 -2.55 -2.55 -2.55 -2.582 -2.557 -2.548 

v15 0 0 0 0.000 0.000 0.000 

w15 44.47 44.26 44.27 44.342 44.268 44.242 

u16 0 0 0 0.000 0.000 0.000 

v16 0 0 0 0.000 0.000 0.000 

w16 41.65 42.08 42.08 42.083 42.065 42.055 

Best p 6505782 6505527 6505019 6504295 6504288 6504279 

Worst p - - - 6504299 6504292 6504281 

Mean p - - - 6504297 6504290 6504280 

No. of Eval. - - - 351700 60700 63500 



  Author: Mai Tien Hau  

143 

 
Figure 7: The convergence rate of TPE for the spatial cable network 

 

5 CONCLUSIONS 

In this work, a physics-informed differential evolution approach has been developed to address the 

geometric nonlinearity of cable net structures. To achieve the displacement field, the TPE of the system is 

considered as an objective function which is minimized by the DE algorithm. The effectiveness and 

simplicity of the proposed approach are verified through three benchmarks the analysis of cable net 

structures. The obtained solutions indicated that the DE found the best TPE values and outperformed the 

other algorithms. One interesting aspect of this approach can find the solution without using any structural 

analyses. With these outstanding features, it holds significant potential for addressing nonlinear structural 

analysis challenges without depending on incremental-iterative algorithms. 
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Tóm tắt. Trong nghiên cứu này, một khuôn khổ tiến hóa được thông tin vật lý được phát triển để xác định 

đáp ứng phi tuyến của mạng cáp không sử dụng phương pháp phần tử hữu hạn. Thay vì giải hệ phương 

trình phi tuyến như các phương pháp số truyền thống, tiếp cận này sử dụng thuật toán tiến hóa để cực tiểu 

hàm năng lượng thế năng. Trong đó, hàm năng lượng thế năng được thiết kế như hàm mục tiêu để định 

hướng quá trình tìm kiếm cùa thuật toán di truyền. Một khi giá trị cực tiểu hàm năng lượng thế năng được 

tìm thấy, các đáp ứng phi tuyến của mạng cáp có thể dễ dàng và nhanh chóng đạt được. Một vài ví dụ số 

được khảo sát để đánh giá hiệu quả cùa khuôn khổ trình bày cho phân tích phi tuyến hình học cấu trúc mạng 

cáp. Kết quả đạt được thể hiện khuôn khổ trình bày là đơn giản để thực hiện và đạt được độ chính xác cao. 

Từ khóa. Phân tích phi tuyến; Cấu trúc lưới cáp; Tính phi tuyến hình học; Sự phát triển khác biệt. 
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