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ABSTRACT  

Dynamic load identification of bridge - vehicle- interaction system on uncertain parameters is 

studied in this paper. The vehicle is modeled by a two degrees of freedom mass-spring system and the 

bridge is modeled as an Euler-Bernoulli beam. A hybrid method that combines the Karhunen-Loève 

expansion and the interval analysis method is proposed to determine the midpoint value, lower and upper 

bounds of dynamic load acting on the vehicle-bridge system with uncertainty. The road surface roughness 

and excitation force of the bridge, which are assumed as Gaussian random processes, are described by the 

Karhunen–Loève expansion. Uncertain parameters of the structure are considered as interval variables, 

due to the fact that only their bounds are needed. The moving load identification algorithm can be 

formulated into an computational inverse problem. To prove the results obtained by proposed method 

HKIM, the interval analysis method (IAM) is also implemented. The results obtained by proposed method 

are effective for dynamic load of system with uncertainty.  

Keywords: Load identification; inverse problem; Karhunen–Loe've expansion; interval analysis; hybrid 

method. 

1.  INTRODUCTION 

 In the past several decades, investigations on dynamic responses of bridge - vehicle interaction system 

has attracted more and more attractions. In order to deep understand the mechanism, various vehicle-

bridge models have been developed, and the most commonly used models are the quarter car model [1,2], 

half car model [3], tractor-trailer model [4] and three-dimensional vehicle model [5,6]. Among these 

models, three-dimensional vehicle model is capable of modeling more complex in the force problem of 

bridge - vehicle interaction system. 

 Due to its importances, lots of researches are focused on dynamic response analysis of bridge – vehicle 

interaction system. Henchi [7] proposed an algorithm for evaluating the dynamics of a bridge 

decomposed into finite elements of three-dimensional with a traffic flow running on the bridge crest at a 

specified speed. The loads acting into the bridge deck are modeled as nodal forces using finite element 

(FE) functions. The combined equations of motion of the bridge-vehicle system are solved directly 

without using iterations [8]. 

  A random force recognition algorithm is proposed to measure the statistics of the applied forces from 

random samples of the bridge deck. The random vibration of bridge structures under moving loads has 

been studied by Zibdeh [9]. This problem has also been studied for application in the stochastic analysis 

of bridge-vehicle interaction systems such as Law [10]. Law [11,12,13] also presented a identification 

model of moving load based on finite element, condensation technique. The displacements are considered 

as the shapes functions of the FE and the measured responses may be limited to a very small of principal 

degrees of freedom of the bridge system..  

 Wu [14] propose an approach to determine dynamic loads based on the Karhunen–Loève extension 

(KLE). The mathematical of the bridge - vehicle is formulated by using the FE in which the Gaussian are 

represented by the KLE. Both system parameters and applied forces are simulated to be fitted for 

Gaussian random processes. Jiang et al. Jiang et al. [15] suggested an optimization method for uncertain 

structures based on convex model and a satisfaction degree of the interval. Convex model is used to 
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describe the uncertainty in which the intervals of the uncertain parameters are considered. Jiang et at 

[16,17,18,19] also proposed a method to solve uncertain structural problem based on a nonlinear interval 

number programming and an interval analysis method. Based on an order relation of interval mathematics, 

the uncertain optimization problem is transformed to calculate the values of the objective function. Liu et 

al. Liu et al. [20] and Liu et al. [21] suggested  interval analysis method to deal uncertainty based on the 

inverse problem which is a class of inverse problem in the system parameters of structure with uncertainty. 

These methods are developed an efficient uncertainty optimization algorithm. 

 The dynamic behavior of a bridge under moving traffic with limited but uncertain system parameters 

was studied by Liu [22]. The calculation formulas for the midpoint, span width, lower and upper limits of 

the vertical action of the bridge are improved using the method of modal superposition and span 

operations. In which, the LHNPSO algorithm improved from PSO is applied to determine the lower and 

upper limits of the dynamic response. N. Liu et al. [23] also proposed a random interval moment model to 

analysis of the bridge - vehicle interaction system. The study analyzes the hybrid probability interval 

dynamics of the bridge - vehicle interaction with a mixture of random and interval attributes. Meanwhile, 

the parameters of vehicle are interval variables and the parameters of bridge are random variables. N. Liu 

et al. [30] proposed the hybrid probabilistic interval dynamic analysis of vehicle–bridge interaction 

system with a mixture of random and interval properties. The vehicle's parameters are considered as 

interval variables and the bridge's parameters are treated as random variables. N. Liu et al. [31] proposed 

interval dynamic response analysis of vehicle-bridge interaction system with uncertain parameters. The 

bridge's and vehicle's parameters are considered as interval variables. A half-car model is used to 

represent a moving vehicle and the bridge is assumed as a simply supported Euler–Bernoulli beam. P. H. 

Ni et al. [32] proposed a reliability-based design optimization method for bridge structures, considering 

the uncertainties of the material parameters and the effect of bridge-vehicle interaction. 

 In this paper, a hybrid method that combines the K-L expansion and interval analysis model is 

proposed to determine the lower and upper bounds of dynamic load acting on uncertain structures. The 

vehicle is modeled by a two degrees of freedom mass-spring model and the bridge is modeled as an 

Euler-Bernoulli beam. The road surface roughness and excitation force, which are assumed as Gaussia, 

are computed by the Karhunen–Loève. Load algorithm can be formulated by inverse problem. The 

bounds of load identification calculated based on the interval analysis method in which the uncertain 

parameters of system are considered as interval variables. The effectiveness of this method is 

demonstrated in Section numerical simulation. 

 The remainder of this paper is organized as: Section 2 presents the model and the equation of motion 

of vehicle-bridge system. Section 3 presents a brief introduction of the Karhunen–Loève expansion model. 

The road surface roughness is presented in Section 4. Section 5 presents load identification algorithm 

based on the inverse problem and interval analysis. Numerical simulation and results are given in Section 

6. Final, conclusion is stated in the Section 7. 

2.  MODELING OF THE VEHICLE-BRIDGE SYSTEM 

2.1 The equation of motion of vehicle-bridge system. 

 The bridge - vehicle model is simplified as shown in Fig.1. Bridge deck is reseached to determine the 

load bounds on the structure. The equation of motion of the vehicle-bridge in Fig.1 is expressed using the 

Lagrange formulation as followings [24]: 
2 4

2 2

( , ) ( , ) ( , )
( ) ( )

y x t y x t y x t
C EI P t x vt

t t x
 
  

+ + = −
  

                                                                           (1) 

The equation of motion of the vehicle can be rewritten in matrix form as: 

1 1 1 1 1 1 1

2 1 1 2 1 1 2

( )  - ( )  - ( ) 0         0

0   ( ) -   ( ) -   ( ) ( ) - ( )

z t c c z t k k z tM

m z t c c z t k k z t P t M m g

            
+ + =           

+            

                                             (2) 

where y(x, t) is the bridge vertical. z1, z2 are the displacements of vehicle and wheel, respectively. k1, c1 are 

the stiffness and damping of the spring, k2 is the stiffness of the tires. C, EI, ρ is the damping, bending 
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stiffness and unit of mass per length of the bridge. ( )x vt − is function evaluated the contact point at 

position x= vt, and v is the speed of vehicle. M, m are the masses of the vehicle body and the wheel, 

respectively. P(t) is the contact force between the wheel and surface bridge, using the Hertz elastic 

contact model as 
3/2

2 2 20

2 20

2 20

( ( , ))

( ) ( , ) 0

0   - z ( , ) 0

k r z z y vt t

P t r z z y vt t

r z y vt t

 − − −


= − − − 
 − − 

                                                                       (3) 

where r is the roughness at the location of read.
2/3

20

2

m M
z g

k

 +
= − 

 

is the deformation of the spring under 

gravity load g. 

2.2  Mode shapes of the bridge deck 

  The solution to Eq.(1), express the transverse displacement y(x,t) in modal coordinates of the bridge:  

( , ) ( ) ( )

1

y x t x q t
i i

i




= 
=

                                                                                                                           (4) 

where ( ),  ( )i ix q t  are the mode shapes function of the ith mode and associated modal coordinates of 

the bridge. 

 For supported beam, the modal shapes of the bridge 

( ) sini

i x
x

L


 =                                                                                                                                       (5)  

 Substitution Eq. (4) into Eq.(1), multiplying both sides of the equation by ( )n x  and integrating with 

respect to x over the length of the beam, we obtain: 
2 4

2 2

2 4

0 0 0 0

( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( )

L L L L

n n n
n n n n n

d q t dq t d x
x dx C x dx EIq t x dx x vt P t x dx

dt dt dx


     + + = −                       (6) 

where                          ( ) sinn

n x
x

L


 =                                                                                                (7) 

 As bridge mass is more than the vehicle mass and the tire damping is not large, Eq.(6) can be 

simplified as: 

 2 2
( ) 2 (t) ( ) ( )sinn n n n n n

n vt
q t q q t P t

L L


  


+ + =                                                                                  (8) 

In this paper, the Wilson’s damping hypothesis is adopted as 

2 n nc  =                                                                                                                                              (9) 

where n  , n  are  damping ratio and frequency of the nth vibration mode respectively,  

with    
2 2

2n

n EI

L





=                                                                                                                            (10) 

 Via Eqs. (2)and Eq. (8) the equation of motion of the bridge - vehicle can be rewritten as: 

( )q Cq Kq F t+ + =                                                                                                                            (11) 

where  1 2 1 2     
T

nq q q q z z=  is the displacement vector. ,  q q  are the velocity vectors and acceleration, 

respectively. C and K are the damping and stiffness matrices of the bridge, which can be expressed as 

follows:  
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                 (13)                             

 F(t) is the force vector, which is shown as: 

1
2 ( )2 ( )

( ) ( )  ...  ( )   0    ( ) - -n

T
vtvt

F t P t P t P t mg Mg
L L



 

 
=  
 

  (14)   

3.  KARHUNEN-LOE'VE EXPANSION 

3.1 Theory 

 The KLE of a stochastic process ( ),u x   based on a bounded, symmetric, positive-definite variance 

function ( )1 2,C x x with spectral analysis is as follows:

          

 

( )1 2 1 2

0

, ( ) ( )n n n

n

C x x x x  


=

=                                       (15) 

where 
n
 and n  are the eigenvalues and eigenvectors of the variance kernel, respectively.  

hey can be shown to be solutions [25] of the following integration formula:  

( ) ( ) ( )1 2 1 2, n n nC x x x dx x  =                                                                                                       (16) 

Since the object is symmetric and the variance kernel has positive definiteness, its eigenvalues are 

orthogonal. Therefore, the eigenvectors can be normalized as follows:

                

 

( ) ( )n m nmx dx x  =                                                                                                                       (17) 

where nm  is the Kronecker delta and 

( ) ( ) ( ) ( ) ( ) ( )
1

, , n n n

n

u x u x u x u x x     


=

= + = +                                                            (18) 

where ( ) ( ), nu x   are denotes the expected value ( ),u x   and a set of random variables respectively. 

( )n  can also be expressed as: [25]  
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( ) ( ) ( )
1

,n n

n

u x x dx   


=                                      (19) 

when ( ),u x   is a Gaussian,  will be a group of variables with as: 

 
( )( )

( ) ( )( )

0n

k L kL

E

E

 

    

=

=

                                                 (20) 

 3.2 Representation of stochastic process vector 

 ( ),V t   is the stochastic process vector m-dimensional, which be defined as 

 ( ) ( ) ( ) 1 2, , , ... ( , )
T

mV t v t v t v t   =                           (21) 

 The mean of the ith element of ( ),V t  denoted as ( )iv t  and  ( ),iv t   respectively as: 

( ) ( )( )( ), 1, ,i iv t E v t i m= =                                                                                                       (22) 

( ) ( ) ( )( ), , 1, ,i i iv t v t v t i m = − =                                                                                  (23)        

                       

( ),V t   can be discredited at the equal time step interval ∆t, and / 1n T t=  +  is the number of time 

instances, where T is the time. The KLE of the discrete vectors of stochastic can be obtained by 

reformulating the unrecognized vector into a dimensional VV as follows: 

( ) ( ) ( ) ( ) 
 

1 1 1 2 1 2 1, , , , ( , ) ( , ) ( , )
T

n n m m nVV t v t v t v t v t v t v t      =    
                                       (24) 

.vv vv is the covariance matrix, which can be defined as: 

( ) ( ) ( ) ( ) . , ( , - ( )( , - )vv vv i i j ji j E v t v t v t v t  =                                                                               (25) 

and which can be written in matrix form as [1] 

1 1 1

1

.

m

m m m
v v

v v v v

vv vv

v v v v
N N

  
 

 =  
   

                                                                                                             (26) 

where vN m n=   and the KLE is known in the following as 

. 0vv vv j j j   − =                                                                                                                                 (27) 

 After the truncation the Kvth order according Eq.(18), the KLE representation of VV as follows: 

( ) ( ) ( ) ( ) ( )

1 1

, ( ) ( )
v vK K

j

vv j j j vv j

j j

VV t t t X t       
= =

= + = +        (28) 

where vv ( )t is the vector
( )j
X  rare the KLE vector and ( ) ( ) ( ) ( ) 1 2 ...

T
j j j j

mX x x x= with dimension 1vN  . 

Thus the component of the ( ),iv t  can be: 

( ) ( )

1

, ( ) ( )
vK

j

i j i

j

t xv t  
=

=                                                                                                                    (29) 

where  is of size 1×n representing the jth K-L components of the jth term in ( ),V t  , and they can 

be extracted from the Karhunen-loe've vector according to Eqs.(24)-(28). Subsequently ( ),V t   

becomes 

( ) ( ) ( ) ( )

1 0

, ( ) ( ) ( ) ( )
v vK K

j j

v j j

j j

V t t x t x t     
= =

= + =                    (30) 
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with the mean vector ( ) ( )0, 1v t   = ,
( )  1 2

0
 

T

mx v v v=   , ( ) ( )  ( ) ( ) ( )

1 2

Tj j j j

mt xx x x= 
 

4.  THE ROAD SURFACE ROUGHNESS 

 The randomness of the surface roughness be represented at a periodic modulated random model. The 

road surface roughness affects vehicle speed according to the formula between power spectral density 

(PSD) and PSD [26]. A form of the PSD of roughness is as follows:   

0 0( ) ( )( / )d dS h S h h h −=                                                                                                                        (31) 

where h  is the spatial frequency in cycle/m and 0h  is the discontinuity frequency equal to 

1/ 2 (cycle/m). ( )dS h
 
is the PSD in m3/cycles. 

0( )dS h is the roughness coefficient in m3/cycles. Eq. (31) 

assume an estimate of the road roughness by
0( )dS h value. This classification is done by estimating the 

constant vehicle speed PSD and taking α = 2. 

 The roughness of the surface in the time domain can be simulated on 0( )dS h as follows [27]. 

1/2
2

0
0

1 0

22 2
( ) 4 ( ) cos

N

d k

k c c c

khk
r x S h

L h L L

 


−

=

    
 = +   
     


                        (32) 

where L is the double length of the bridge. θk is a set of randomly distributed angles between 0 and 2π 

independently. From formula (32), the roughness samples of the surface can be determined. 

 5. MOVING LOAD IDENTIFICATION 

5.1 Excitation road surface roughness identification using Karhunen-Loe've expansion 

 From the formula of the Karhunen-Loe've expansion presented in Section 3, with the irregular 

pavement profiles considered as samples of a Gaussian distribution, the pavement roughness of Eq. (32) 

can be calculated by its K-L components as follows

    

 

( )

1

( , ) ( ) ( )
k

j

j

j

r x r x  
=

=                                                                                                                     (33) 

where ( )j  is the variables at orthogonal shown in Eq.(20); θ denotes the random dimension; 
( ) ( )j
r x  is 

the jth K-L components of the road surface roughness. k is the number of the K-L components for the 

road surface roughness after truncation. 

5.2  Inverse model: moving load identification 

 The algorithm for identifying moving loads can be constructed according to the model designed in the 

forward problem. The obtained results of the bridge including displacement, deformation, velocity and 

acceleration can be applied in the identification of loads. This study, the displacement signals are applied. 

The displacements below the bridge deck denoted as ˆ( , , )y x t   can be obtained at the deformations from 

the relationship of the variables as follows 
2

2

ˆ( , , )
ˆ( , , )

y x t
x t z

x


 


= −


                                              (34) 

where z is the distance at the neutral axis of the beam. 

 Supposing a set of ˆ( , , )i j ky x t   or ˆ( , , )i j kx t  under the deck is measured, where 

1,... , 1,..., , 1,...,m tk N i N j N= = = . , mN N
and Nt are the number of the samples , the measurement points 

and time instants, respectively. From Eq. (4) (or together with Eq. (34) in case of using deformation), it is 

possible to obtain the nodal displacement patterns at the degrees of freedom of the elements. The 

displacement vector of the bridge in the inverse model is known to be ˆ( , )q t  .The dimension of 

ˆ( , )q t  depends on the number of the points
mN . Assuming the displacement vector ˆ( , )q t  calculated at the 

measured displacement signal is a multi-dimensional Gaussian process which can be represented by a 

number of its K-L components from theory introduced as: 
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( )
ˆ

( )

0

ˆ ˆ, ( ) ( )
Rk

j

j

j

q t q t  
=

=                                                           (35) 

where  ( ) ( ) ( ) ( )

1 2
ˆ ˆ ˆ ˆ( ) ( ) ( )... ( )

m

T
j j j j

Nq t q t q t q t= is the vector of the jth K-L of the measurement displacement 

samples and ˆ
Rk  are denotes KLE components. 

 The corresponding velocity vectors and acceleration of the displacement denoted as 
( )ˆ ( ) jq t and 

( )ˆ ( )jq t respectively, which can be expressed as  
ˆ

( )

0

ˆ ˆ( , ) ( ) ( )
Rk

j

j

j

q t q t  
=

=                                                                                                                       (36) 

ˆ

( )

0

ˆ ˆ( , ) ( ) ( )
Rk

j

j

j

q t q t  
=

=                                                                                                                       (37) 

where 
( )ˆ ( ) jq t and 

( )ˆ ( )jq t  can be obtained at the vector of the KLE component of nodal displacement 
( )ˆ ( ) jq t using the cubic spline technique. 

 Due to superposition of the linear systems and orthogonal of the KLE components, the random force 

ˆ( , )P t   can be also represented as 
ˆ

( )

0

ˆ ˆ( , ) ( ) ( )
pk

j

j

j

P t P t  
=

=                                                                                                                         (38) 

where 
( )ˆ ( )jP t  is the vector of component of random interaction forces to be identified and ˆ ˆ

p Rk k=  

 It can be known that the number of components of the node displacement vectors ˆ
Rk  in the inverse 

model depends on the properties of the displacement of the measurement, the KLE components of the 

nodal displacements are truncated when the eigenvalue βn in Eq.(18) is much smaller than the rest. 

 From Eqs. (35)-(38) into Eq.(8), the equation of motion of the bridge in the inverse problem can be 

rewritten as: 

( ) ( ) ( ) ( )ˆ ˆˆ ˆˆ ˆ ˆ( ) ( ) ( ) ( )k k k kq t Cq t Kq t P t+ + =                                                                                                  (39) 

where ̂  is the condensed location matrices corresponding to the forces in the inverse model with 

1 2
ˆ ˆ ˆ ˆ  ... 

T

n    =
                                                          (40) 

with   
1 2

2 2 2 2ˆ ˆ ˆsin , sin , sinn

vt vt n vt

L L L L L L

  
  

  
= = =                                                                  (41) 

 From Eq.(39), the vector of the interaction forces 
( )ˆ ( )kP t can be identified as                       

( )
1

( ) ( )ˆ ˆ ˆˆ ( ) ( )k T T kP t H t  
−

=
                                                                                                                   (42) 

where   ( ) ( ) ( ) ( )ˆ ˆˆ ˆ ˆ( ) ( ) ( ) ( )k k k kH t q t Cq t Kq t= + +                                                                                  (43) 

5.3  The load identification for vehicle-bridge system based on interval analysis method 

  In this section, the interval analysis method is presented to determine the bounds of load acting on the 

uncertain structure. 

 An m dimensional vector λ is used to represent the uncertain parameters that exist in the structural 

properties problem. An interval variable vector 
I is used to describe the uncertainty of the parameter λ. 

 Based on the interval mathematics [28,29] the interval variable vector 
I can be rewritten in the 

following form  

 , , 1,1I L R c w c w c w           = = − + = + −         (44) 
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where ,L R    denotes an interval, the superscripts L and R represent the lower and upper bounds of the 

interval respectively. ,
w  are the midpoint and radius vectors of  respectively, which are can be 

expressed as 

, , 1,2,...,
2 2

L RL R
c c i i

i i n
  

 
++

= = =                                                                                            (45) 

, , 1,2,...,
2 2

R LR L
w w i i

i i n
  

 
−−

= = =                                                                                        (46) 

Based on Eq.(44), the vector λ can be expressed in the following form 

c  = +                                                                                                                                        (47) 

   , 1,1 , 1,2,-1,1 ,w w

i i n    − =                                                                                         (48)                                                                                                                                                              

 When the vector λ is described by 
I  for each specific time point t, the load ( , )P t  will form a 

interval vector instead of a real number vector with the respect to the vector λ
 

 

( , ) ( ) [ ( ), ( )]I L RP t P t P t P t  =                                                                                                              (49) 

where ( )IP t  is the vector of load at the time t and its bounds ( )LP t and ( )RP t  can be rewritten as 

( ) ( )

( )

min ,

max  ( , )

L

R

t P t

t P t

P

P













=

=
                                                                                                                             (50) 

 | L R

i i    =   , 1,2, ,i n=   

 When a structure contains the parameters   as introduced in the Section 3, the interval analysis 

method is applied to the intervals of the force. When the uncertain levels, namely the intervals of 

parameters with uncertainly are relatively small, the vector ( , )P t  in Eq.(49) can be approximated as a 

function with respect to δλ the first-order Taylor. 

1

( , )
( , ) ( , ) ( , )

cn
c c

i

i i

P t
P t P t P t


    

=


= +  +


   (51) 

From δλ defined by Eq.(48), the interval vector ( , )IP t  can be obtained through a natural interval 

extension of Eq.(51) as: 

1

( , )
( , ) ( , ) [-1,1]

cn
I c w

i

i i

P t
P t P t


  

=


= +


                                                                                           (52) 

 So, the lower bounds and the upper bounds of the load at each specific t  

( )
1

( , )
min ( , ) ( , )

cn
L c w

i

i i

P t
P t P t P t




  


=


= = −


                                                                                (53) 

( )
1

( , )
max ( , ) ( , )

cn
R c w

i

i i

P t
P t P t P t




  


=


= = +


                                                                                  (54) 

 The dynamic load response algorithm in an inverse problem of the system can be formulated based on 

the excitation force model using KLE combines the interval analysis method. So, from Eqs.(53),(54) into 

Eq(42)., the lower and upper bounds of the dynamic load of the bridge at each specific time point t can be 

identified as  

( ) ( )
( )

1
( )

1
( ) ( ) ( )

1

ˆ ˆ ˆ ( , )
ˆ ˆ ˆˆ ˆmin ( , ) ( , )

T T k c
n

k L k T T k c w

i

i i

H t
P t P t H t



   
     



−

−


=


= = −


                (55) 
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( ) ( )
( )

1
( )

1
( ) ( ) ( )

1

ˆ ˆ ˆ ( , )
ˆ ˆ ˆˆ ˆmin ( , ) ( , )

T T k c
n

k R k T T k c w

i

i i

H t
P t P t H t



   
     



−

−


=


= = +


   (56) 

6. NUMERICAL SIMULATION 

 Axle system is simplified as shown in Fig.1 of the mass-spring bridge model, where the bridge can be 

reduced to an equivalent stiffness with Euler-Bernoulli beam. The vehicle is studied by a two degrees of 

freedom of mass-spring. The specific parameters of the bridge - vehicle as: E = 30GPa, I = 3.854m4, L = 

48m, M = 12000kg, m = 500kg, ρ = 8.3x103kg/m, c1 = 11593kg/s, k1 = 28x104 N/m, k2 = 156x103 N/m. 

m
z2

z1

k1

k2

y

x

c1

MM
V

o

 
Figure 1: The modal of the vehicle-bridge system 

6.1 The road surface roughness 

 Ten thousand samples of the irregular surface profile are computed through Eq.(32) to represent the 

process ( ),r x  . This section, the class road 
0( )dS h = 6x10-6 m3/cycles and random angle  k  is expressed 

by a random between zero and 2π with the command 'rand'. At an arbitrary position denoted as 1x  on the 

surface profile along the dimension form a set of samples that will be obtained the corresponding random 

variable ( )1,r x  . In the K-L expansion method introduced in Section 5.2, 10,000 samples of the excitation 

forces P(t, θ) are obtained from samples of the irregular road profile according to Eq.(3). The KLE is 

applied to P(t, θ) and the terms of K–L with the eigenvalue j in Eq.(28) which are much smaller than the 

rest and less than unity, are truncated. The road surface roughness of the vehicle-bridge system is plotted 

as shown in Fig.2 

0 4 8 12 16 20 24 28 32 36 40
-0.01

-0.008

-0.006

-0.004

-0.002

0

0.002

0.004

0.006

0.008

0.01

X (m)

r 
(m

)

 
Figure 2: The road surface roughness by KLE method 

6.2 Dynamic load identification 

 In this paper, vehicle speed v = 20 m/s is used to consider dynamic load response. The contact force 

P(t) between wheel and surface bridge is identified in Eq.(3). The displacement vector of the bridge-
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vehicle system is computed through the random process road surface roughness ( ),r x  . Displacement 

response of the bridge at its mid-span can be obtained by Eq. (4) as shown in Fig.3 
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Figure 3: The bridge’s displacement at v = 20m/s 

The Young’s modulus E, density ρ, damp coefficient c1 and stiffness k1 are treated as uncertain 

parameters. Uncertainty level of the parameters, namely 5% and 10% off from the midpoints are studied.  

 The midpoint value of the identified load for all uncertain parameters is computed based on inverse 

problem in Eqs.(55) or (56) which is obtained by the hybrid method (HKIM) 

 as shown in Fig.4  
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Figure 4: The midpoint of the load at 10% level  

 The first-order differential coefficients of the load to the parameters E can be calculated according to 

Eq.(55), (56). The sensitivity curve of the load to interval variable E at each time point t and 10% level 

are plotted as shown in Figs.(5), respectively. Its can be found that the parameters significant influence to 

the upper bounds and the lower bounds of the identified load when the sensitivity curves for the 

parameters are considered.  
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Figure 5: The sensitivity curve of the load to interval variable E 
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The first-order differential coefficients of the load to the parameters ρ, c1 and k1 can be calculated 

according to Eq.(55), (56). The sensitivity curves of ρ, c1, k1 at each time point t and 10% level are plotted 

as shown in Figs.(6-8), respectively. Its can be found that the parameters significant influence to the upper 

bounds and the lower bounds of the identified load when the sensitivity curves for the parameters are 

considered. 
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Figure 6: The sensitivity curve to interval variable ρ 
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Figure 7:The sensitivity curve to interval variable c1 
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 Figure 8: The sensitivity curve to interval variable k1 

 To investigate the influences of parameters on the bridge, the uncertainty level of the parameters, 

namely  5% and  10% are considered. The lower bounds and the upper bounds of the identified load 

are computed by Eqs. (55) and Eq. (56) which can be given as shown in Figs.9 and 10, respectively. From 

Figs.9 and 10, its can be easily observer that when the uncertainty levels of parameters increases, the 
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lower and upper bounds of the identified load increases too. Tables.1 and 2 also show that the load acting 

bounds on the system are obtained very efficiently for different uncertainty levels.  

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.8

1.0

1.2

1.4

1.6
x10

5

Time (s)

Lo
ad

 (N
)

 

 

Lower bound

Upper bound

Midpoint

 
Figure 9: The midpoint and bounds of the load at  5% level 
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Figure 10: The midpoint and bounds of the load at 10% level 

 To prove the results obtained by presented method HKIM, the interval analysis method (IAM) is 

also implemented when the uncertainty levels of all parameters are  5% and  10% as shown in the 

Figs.11 and 12 .The results on the upper bounds and the lower bounds of the force at the specific time 

points by two methods also are listed in Tables.3 and 4. From these tables, they can be obtained that by 

two methods agree well when the uncertainty level of system parameters are small. The error becomes 

larger with the increase of uncertainty level of parameters. When uncertainty level is  10%, the biggest 

relative error at 0.4 (s) is 1.9799%.for all system parameters 

 The Figs.11 and 12 also show that the results calculated by proposed method agree very well with 

those obtained by using interval analysis method.  
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Figure 11: The bounds of the load by HKIM and IAM at  5% level  
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Figure 12: The bounds of the load by HKIM and IAM at  10% level 

Table 1: The bounds of load by HKIM at  5% level 

  Vehicle speed v= 20m/s   

Time(s) Actual load (x105) Upper(x105) Lower(x105) Deviation (%) 

    Upper Lower 

0.1 1.2127 1.2260 1.2052 1.0967 0.6185 

0.2 1.3423 1.3673 1.3212 1.8625 1.5719 

0.3 1.0986 1.1656 1.0016 6.0987 8.8294 

0.4 1.1735 1.1758 1.1710 0.1960 0.2130 

0.5 0.9762 0.9871 0.9518 1.1166 2.4995 

0.6 0.9017 0.9226 0.8624 2.3178 4.3629 

0.7 1.1003 1.1226 1.0825 2.0267 1.6177 

0.8 1.2000 1.2816 1.1137 6.8000 7.1917 

0.9 1.1146 1.1986 0.9976 7.5363 10.4970 

Table 2: The bounds of load by HKIM at  10% level 

  Vehicle speed v= 20m/s Deviation (%) 

Time(s) Actual load(x105) Upper(x105) Lower(x105) 

    Upper Lower 

0.1 1.2127 1.2465 1.2006 2.7872 0.9978 

0.2 1.3423 1.3693 1.2954 2.0115 3.4940 

0.3 1.0986 1.2516 0.9419 13.9268 14.2636 

0.4 1.1735 1.1768 1.1701 0.2812 0.2897 

0.5 0.9762 1.0012 0.9418 2.5610 3.5239 

0.6 0.9017 0.9426 0.7986 4.5359 11.4340 

0.7 1.1003 1.1456 1.0675 4.1171 2.9810 

0.8 1.2000 1.3454 1.0997 12.1167 8.3575 

0.9 1.1146 1.3016 0.9121 16.7773 18.1680 

 
Table 3: The comparison of results by HKIM and IAM at  5% level 

  Vehicle speed v= 20m/s  

 Upper bound Lower bound 

Time (s) HKAM(x105)     IAM(x105)      Error (%) HKAM(x105)     IAM(x105)      Error (%) 

0.1 1.2260 1.2289 0.2360 1.2052 1.2028 0.1995 

0.2 1.3673 1.3885 1.5268 1.3212 1.3102 0.8396 

0.3 1.1656 1.1882 1.9020 1.0016 0.9874 1.4381 

0.4 1.1758 1.1797 0.3306 1.1710 1.1687 0.1968 

0.5 0.9871 1.0018 1.4674 0.9518 0.9446 0.7622 

0.6 0.9226 0.9227 0.0108 0.8624 0.8538 1.0026 

0.7 1.1226 1.1264 0.3374 1.0825 1.0747 0.7258 

0.8 1.2816 1.2979 1.2559 1.1137 1.1076 0.5507 

0.9 1.1986 1.2216 1.8828 0.9976 0.9792 1.8791 

 



Authors: Truong Van Huy et al 
 

123 

 

 

Table 4: The comparison of results by HKIM and  IAM at   10% uncertainty level 

  Vehicle speed v= 20m/s  

 Upper bound Lower bound 

Time (s)  HKAM(x105)      IAM(x105)      Error (%) HKAM(x105)     IAM(x105)      Error (%) 

0.1 1.2465 1.2492 0.2166 1.2006 1.1972 0.2840 

0.2 1.3693 1.3909 1.5774 1.2954 1.2909 0.3486 

0.3 1.2516 1.2754 1.9016 0.9419 0.9247 1.8601 

0.4 1.1768 1.2001 1.9799 1.1701 1.1656 0.3861 

0.5 1.0012 1.0067 0.5493 0.9418 0.9376 0.4480 

0.6 0.9426 0.9475 0.5198 0.7986 0.7947 0.4908 

0.7 1.1456 1.1496 0.3492 1.0675 1.0612 0.5937 

0.8 1.3454 1.3697 1.8062 1.0997 1.0862 1.2438 

0.9 1.3016 1.3159 1.0986 0.9121 0.8993 1.4233 

7. CONCLUSION 

 A hybrid method that combines the K-L expansion and interval analysis method is proposed to stably 

identify the upper bounds, lower bounds of dynamic load acting on the vehicle-bridge system with 

uncertainty. The vehicle is modeled by a two degrees of freedom mass-spring system and the bridge is 

modeled as an Euler-Bernoulli beam. Road surface roughness is presented by K-L expansion method and 

the uncertain parameters of the system are described by the interval. The algorithm of moving force 

identification can be formulated based on the interval analysis method. The upper and lower bounds of 

the identified load are computed by the hybrid method HKIM. The results obtained by proposed method 

HKIM are compared with actual load and interval analysis method IAM. The results obtained by the 

numerical simulation demonstrate that the proposed method is effective and stable for dynamic load 

identification of the bridge-vehicle interaction system with uncertainty. 
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