NGHIÊN CỨU ẢNH HƯỞNG CỦA VẬT LIỆU CHE CHẮN PHÔNG LÊN CÁC THÔNG SỐ ĐẶC TRƯNG CỦA PHÔ GAMMA BẰNG CHƯƠNG TRÌNH MCNP4C2

VÕ XUÂN ÂN

Khoa Công nghệ Điện tử, Trường Đại học Công nghiệp Thành phố Hồ Chí Minh *Tác giả liên hệ: voxuanan@iuh.edu.vn DOIs: https://www.doi.org/10.46242/jstiuh.v73i1.5069

Tóm tắt. Trong phép đo phổ gamma, buồng chì phông thấp bao gồm các lớp vật liệu che chắn dùng để giảm phông bức xạ gamma từ môi trường xung quanh, nhưng các gamma tán xạ từ các lớp vật liệu che chắn này có thể đóng góp và ảnh hưởng đến các thông số đặc trưng của phổ gamma quan tâm. Trong công trình này, chương trình MCNP4C2 (Monte Carlo N-Particle version 4C2) được sử dụng để mô phỏng phố gamma đối với từng trường hợp các lớp vật liệu cấu thành buồng chỉ được bóc tách từ trong ra ngoài, kể cả vật liệu làm thân giữ nguồn phóng xạ cũng được tính đến. Trên cơ sở phổ năng lượng gamma, các tỉ số đỉnh trên toàn phần (P/T - Peak to Total), tỉ số đỉnh trên Compton (P/C - Peak to Compton) trong từng trường hợp được tính toán để xác định mức độ ảnh hưởng của từng lớp vật liệu. Kết quả cho thấy rằng, chì có bậc số nguyên tử Z cao, tán xạ Compton giảm do hiệu ứng quang điện chiếm ưu thế so với đồng và thiếc; paraffin đóng vai trò quan trọng trong quá trình tán xạ; riêng lớp epoxy tiếp xúc trực tiếp nguồn phóng xạ nên gây tán xạ không đáng kể.

Từ khoá. phổ kế gamma, đầu dò bán dẫn siêu tinh khiết HPGe (Hyper Pure Germanium), buồng chì phông thấp.

1 MỞ ĐẦU

Hiện tượng tán xạ trên phổ kế gamma dùng đầu dò bán dẫn do vật liệu che chắn và thân giữ nguồn phóng xạ có thể ảnh hưởng đến kết quả đo phổ gamma. Plagnard và cộng sự (2008) đã khảo sát sự ảnh hưởng của từng loại vật liệu xung quanh nguồn và đầu dò lên phổ năng lượng tán xạ ở vùng năng lượng 15 - 80 keV dùng đầu dò HPGe cấu hình planar bằng chương trình mô phỏng Monte Carlo PENELOP kết hợp so sánh với thực nghiệm [1]. Mai Văn Nhơn và cộng sự (2008) đã nghiên cứu ảnh hưởng tán xạ nhiều lần từ vật liêu xung quanh đầu dò lên phổ năng lương gamma của đầu dò HPGe đồng truc loại p sử dung các tia X đặc trưng của chì, đỉnh thoát đơn, đỉnh thoát đôi, đỉnh tán xạ ngược và các đỉnh năng lượng toàn phần của nguồn 60Co bằng chương trình mô phỏng Monte Carlo MCNP4C2 [2]. Thiessea và công sư (2022) đã nghiên cứu sự ảnh hưởng của hiệu ứng tán xạ bên trong mẫu thể tích hoạt độ thấp bằng chương trình mô phỏng Monte Carlo GEANT4 kết hợp so sánh với thực nghiêm [3]. Singh và công sự (2023) đã nghiên cứu thực nghiệm tán xạ gamma năng lượng 661,2 keV lên sắt với các góc tán xạ khác nhau để xác định bề dày bão hoà [4]. Khadijah và công sư (2024) đã nghiên cứu hiệu suất che chắn của kính làm bằng hợp kim chì Pb -W - B pha thêm Sb, Al, Bi đối với gamma năng lượng 0,1 - 1 MeV [5]. Trong công trình này, chúng tôi tiến hành nghiên cứu hiên tương tán xa của tia gamma lên các vật liêu cấu thành buồng chì và thân giữ nguồn phóng xạ của hệ phổ kế gamma dùng đầu dò HPGe bằng chương trình mô phỏng Monte Carlo MCNP4C2.

2 PHƯƠNG PHÁP NGHIÊN CỨU

Buồng chỉ che chấn phông gamma môi trường của hệ phổ kế được đặt tại Trung tâm Hạt nhân TPHCM là loại tự chế tạo gồm các lớp chỉ, thiếc, paraffin và đồng tính từ ngoài vào như hình 1. Trong thực tế việc bố trí thí nghiệm để nghiên cứu ảnh hưởng tán xạ của từng lớp vật liệu che chấn là rất khó khăn do hệ đo còn phải thực hiện nhiều nhiệm vụ khác nhau phục vụ các vấn đề kinh tế, xã hội. Tuy nhiên trong những năm gần đây, nhò có những chương trình mô phỏng Monte Carlo về tương tác của gamma với vật chất đáng tin cậy như EGS [6], GEANT [7], MCNP [8], DETEFF [9], CYLTRAN [10] ... đã khắc phục được những khó khăn trong bố trí thí nghiệm. Trong công trình này, chúng tôi sử dụng chương trình MCNP4C2 [11] để khảo sát hiện tượng tán xạ đối với các trường hợp khi có đầy đủ các lớp vật liệu che chấn và khi các lớp vật liệu được bóc tách từ trong ra ngoài. Nguồn phóng xạ được chọn để khảo sát là nguồn chuẩn ¹³⁷Cs dạng điểm, phát tia gamma năng lượng 661,6 keV, được đặt cố định trong thân làm bằng nhựa epoxy, dạng đĩa

NGHIÊN CỨU ẢNH HƯỞNG CỦA VẬT LIÊU CHE CHẮN PHÔNG ...

tròn có đường kính 25,4 mm và chiều cao 6,4 mm. Năng lượng 661,6 keV được chọn để khảo sát vì nó thuộc miền năng lượng trung bình, không có hiện tượng tạo cặp, phổ năng lượng tán xạ không quá phức tạp nhưng vẫn đầy đủ các tính chất đặc trưng. Khoảng không gian chứa nguồn và đầu dò bên trong buồng chì được lấp đầy không khí với mật độ 0,00129 g/cm³. Trong quá trình nghiên cứu, chúng tôi đánh giá ảnh hưởng tán xạ của các vật liệu theo từng miền năng lượng: miền tán xạ ngược (180 - 300 keV), miền Compton (358 - 382 keV) và miền năng lượng tán xạ nhiều lần được tính từ mép Compton đến đỉnh năng lượng tón a phần (476 - 659 keV). Để tiến hành khảo sát hiện tượng tán xạ, chúng tôi tiến hành mô phỏng trong trường hợp đặt nguồn ở các vị trí cách nguồn 5 cm, 10 cm, 15 cm và ở sát nắp buồng chì tương ứng với khoảng cách 18,76 cm. Ở từng vị trí đó, phổ gamma tán xạ ứng với bảy trường hợp sẽ được khảo sát: buồng chì với đầy đủ các các lớp vật liệu che chắn (TH1), buồng chì khi không có lớp đồng (TH2), buồng chì khi không có lớp đồng (TH2), buồng chì khi không có lớp đồng và paraffin (TH3), buồng chì khi không có lớp đồng, paraffin và thiếc (TH4), trường hợp không có buồng chì (TH5), trường hợp không có buồng chì lẫn lớp epoxy bao bọc nguồn (TH6) và trường hợp tương tự như TH6 nhưng không có không khí trong phần không gian hệ đo (TH7). Ở mỗi trường hợp, chúng tôi đánh giá ti số P/T và số gamma tán xạ của từng vùng năng lượng.

Hình 1. Mặt cắt đứng của buồng chỉ che chắn phông bức xạ vẽ bằng chương trình MCNP4C2, được bố trí các lớp vật liệu gồm đồng, paraffin, thiếc, chỉ tính từ trong ra ngoài và nguồn phóng xạ với thân giữ nguồn làm bằng nhựa epoxy. Trường hợp nguồn đặt cách đầu dò 15 cm.

3. KẾT QUẢ VÀ THẢO LUẬN

3.1. Tỉ số P/T

P/T (peak/total) là tỉ số giữa diện tích đỉnh năng lượng toàn phần (N_{peak}) và diện tích toàn phổ (N_{total}) [12]:

$$P/T = \frac{N_{peak}}{N_{total}} \tag{1}$$

Turthur - 1 an	Khoảng cách nguồn - đầu dò							
Trương nộp	5cm	10cm	15cm	18,76cm				
TH1	0,15275	0,14519	0,13528	0,12365				
TH2	0,15503	0,14763	0,13761	0,12588				
TH3	0,16499	0,16751	0,16220	0,15076				
TH4	0,16677	0,17250	0,17162	0,16614				
TH5	0,16800	0,17627	0,17994	0,18207				
TH6	0,17397	0,18269	0,18662	0,18886				
TH7	0.17398	0.18272	0.18685	0.18854				

Bảng 1. Tỉ số P/T đối với vật liệu tham gia che chắn và khoảng cách nguồn - đầu dò.

Hình 2. Sự phụ thuộc của tỉ số P/T theo vật liệu tham gia che chắn và theo khoảng cách nguồn - đầu dò.

Bảng 1 và hình 2 trình bày kết quả tính toán tỉ số P/T đối với vật liệu tham gia che chắn và khoảng cách nguồn - đầu dò. Từ bảng 1 và hình 2, nhận thấy rằng khi tháo bỏ dần các lớp vật liệu, tỉ số P/T tăng. Trường hợp buồng chì với đầy đủ các các lớp vật liệu che chắn (TH1), khi khoảng cách nguồn và đầu dò tăng dần, tỉ số P/T giảm do sự tán xạ đáng kể của tia gamma lên các lớp vật liệu che chắn.

Cũng theo hình 2, xét TH1 và TH2, tỉ số P/T thay đổi không đáng kể. Điều đó chứng tỏ lớp đồng với bề dày 6 mm gây ảnh hưởng không lớn đến tỉ số P/T. Xét TH2 TH3, tỉ số P/T tăng nhanh ở từng vị trí. Điều này được giải thích là do lớp paraffin có bề dày đáng kể (khoảng 6 cm), phù hợp với nhận định xác suất tán xạ ngược tăng tuyến tính với bề dày và bậc số nguyên tử của vật liệu tán xạ [13]. Xét TH6 và TH7, tỉ số P/T hầu như không thay đổi. Điều đó chứng tỏ lớp không khí giữa đầu dò và buồng chì có mật độ phân tử thấp không gây ảnh hưởng đến sự thay đổi phổ năng lượng tán xạ.

3.2. Miền năng lượng tán xạ ngược

Trong phổ gamma tán xạ thường xuất hiện một đỉnh trong khoảng năng lượng 200 - 250 keV, gọi là đỉnh tán xạ ngược [13]. Đối với nguồn ¹³⁷Cs, đỉnh tán xạ ngược tương ứng với vạch năng lượng 184,3 keV, do đó miền tán xạ ngược được chọn trong khoảng 180 - 300 keV.

		Khoảng cách nguồn - đầu dò										
Trường hợp	5 cm		10 cm		15 cm		18,76 cm					
	Gamma	So sánh	Gamma	So sánh	Gamma	So sánh	Gamma	So sánh				
	tán xạ	tương đối	tán xạ	tương đối	tán xạ	tương đối	tán xạ	tương đối				
TH1	1952302	1,000	859438	1,000	515715	1,000	415676	1,000				
TH2	1850447	0,948	808855	0,941	485611	0,942	390661	0,940				

Bảng 2. Số gamma tán xạ trong miền tán xạ ngược và phép so sánh tương đối.

	^	<i>′</i> .	?	. ?.	2	^	^		ت	^	
M	LUIEN	CUTU	ANIL	ULIÓNC	CIIA	VAT	LICIT	CUE	CUAN	DUONC	
INV	JHILIN	UUU	AND	HUUNU	UUA	VAI	LIEU	UTE	UNAN	FHUNU	
						•					

TH3	1626318	0,833	644634	0,750	379663	0,736	316974	0,763
TH4	1555398	0,797	577315	0,672	313281	0,607	234864	0,565
TH5	1524605	0,781	544459	0,634	276094	0,535	185780	0,447
TH6	1339789	0,686	477272	0,555	241813	0,469	162787	0,392
TH7	1337835	0,685	474530	0,552	240572	0,466	162168	0,390

Hình 3. Tỉ lệ gamma tán xạ ở miền tán xạ ngược theo vật liệu tham gia che chắn và theo khoảng cách nguồn - đầu dò.

Trong bảng 2, các cột 2, 4, 6 và 8 trình bày số gamma tán xạ của 7 trường hợp, các cột 3, 5, 7 và 9 trình bày phép so sánh tương đối của các trường hợp so với TH1 đối với các khoảng cách nguồn - đầu dò 5 cm, 10 cm, 15 cm và 18,76 cm. Hình 3 biểu diễn tỉ lệ gamma tán xạ ở miền tán xạ ngược theo vật liệu tham gia che chấn và theo khoảng cách nguồn - đầu dò. Từ bảng 2 và hình 3, nhận thấy rằng vật liệu cấu thành buồng chì bao quanh đầu dò càng nhiều thì số đếm miền tán xạ càng lớn. Cụ thể là số gamma tán xạ trong miền tán xạ ngược giảm khi lần lượt gõ bỏ dần các lớp vật liệu làm buồng chì. Trong các vị trí khảo sát, tỉ lệ gamma tán xạ ở TH6 và TH7 thay đổi không đáng kể chứng tỏ lớp không khí bên trong buồng chì đóng góp vào miền tán xạ ngược không nhiều. Xét TH2 và TH3, tỉ lệ gamma tán xạ thay đổi khá rõ rệt chứng tỏ lớp paraffin đóng góp nhiều vào miền tán xạ ngược. Xét TH4 và TH5, ở vị trí 5 cm, chì đóng góp của chì tăng lên. Xét TH5 và TH6, ở vị trí 5 cm, đối với lớp epoxy, tỉ lệ gamma tán xạ thay đổi lớn và giảm dần khi tăng khoảng cách nguồn - đầu dò. Điều đó chứng tỏ khi ở gần nguồn, những vật liệu tiếp xúc trực tiếp với nguồn gây tán xạ nhiều.

3.3. Miền năng lượng Compton

Trong phổ gamma tán xạ, miền Compton là miền liên tục bên dưới mép Compton. P/C (peak/Compton) là tỉ số giữa chiều cao đỉnh năng lượng toàn phần (H_{peak}) và chiều cao trung bình của miền liên tục Compton (H_{aver}) [13]:

$$P/C = \frac{H_{peak}}{H_{aver}} \tag{2}$$

Đối với nguồn ¹³⁷Cs phát tia gamma năng lượng 661,6 keV, miền Compton được chọn trong khoảng 358 - 382 keV.

	Khoảng cách nguồn - đầu dò										
Trường hợp	5 cm		10 cm		15 cm		18,76 cm				
	Gamma	So sánh	Gamma	So sánh	Gamma	So sánh	Gamma	So sánh			
	tán xạ	tương đối	tán xạ	tương đối	tán xạ	tương đối	tán xạ	tương đối			
TH1	2376985	1,0000	855115	1,0000	435757	1,0000	300868	1,0000			
TH2	2374703	0,9990	853798	0,9985	434424	0,9760	299337	0,9949			

Bảng 3. Số gamma tán xạ trong miền Compton và phép so sánh tương đối.

Tác giả: Võ Xuân Ân

TH3	2375491	0,9994	853957	0,9986	433487	0,9948	293600	0,9758
TH4	2375130	0,9992	853769	0,9984	433179	0,9941	292656	0,9727
TH5	2375336	0,9993	853999	0,9987	433190	0,9941	292498	0,9722
TH6	2359771	0,9928	849140	0,9930	430856	0,9888	290903	0,9669
TH7	2359220	0,9925	848430	0,9922	431140	0,9894	290327	0,9650

Trong bảng 3, các cột 2, 4, 6 và 8 trình bày số gamma tán xạ của 7 trường hợp, các cột 3, 5, 7 và 9 trình bày phép so sánh tương đối của các trường hợp so với TH1 đối với các khoảng cách nguồn - đầu dò 5 cm, 10 cm, 15 cm và 18,76 cm. Hình 4 biểu diễn tỉ lệ gamma tán xạ ở miền Compton theo vật liệu tham gia che chắn và theo khoảng cách nguồn - đầu dò. Từ bảng 3 và hình 4, nhận thấy rằng trong miền Compton, xét TH5 và TH6, lớp epoxy tiếp xúc trực tiếp với nguồn đóng góp số gamma tán xạ đáng kể hơn so với các vật liệu khác. Xét TH2 và TH3, ở vị trí 18,76 cm, tỉ lệ gamma tán xạ thay đổi lớn chứng tỏ paraffin gây tán xạ mạnh ở miền Compton so với các vật liệu còn lại.

Hình 4. Tỉ lệ gamma tán xạ ở miền tán xạ Compton theo vật liệu tham gia che chắn và theo khoảng cách nguồn - đầu dò.

\mathbf{D}^{2} \mathbf{I} \mathbf{T}^{2} $\mathbf{\dot{D}}$ \mathbf{D}	· /· ^/ 1·^	.1 . 1 1	ώ <u>\ 11</u> γ	/ 1 À 4/	× 1×
Bano 4 I I so P/C dc	n von vat he	u tham gia che ch	an va khoano (rach nouion - de	an do
Dung 4. 11 50 170 ut	n voi vật nộ	a tham gia one on	un va Knoang v	aon nguon au	iu uo.

Turrère a la are -		Khoảng cách r	nguồn - đầu dò	
Trường nộp	5cm	10cm	15cm	18,76cm
TH1	114,027	113,607	113,365	113,126
TH2	114,081	113,611	113,642	113,453
TH3	114,049	113,555	113,402	113,731
TH4	114,035	113,609	113,483	113,745
TH5	114,047	113,564	113,441	113,782
TH6	114,391	114,077	113,915	114,341
TH7	114,044	113,394	112,300	114,020

Bảng 4 và hình 5 trình bày kết quả tính toán tỉ số P/C đối với vật liệu tham gia che chắn và khoảng cách nguồn - đầu dò. Từ bảng 4 và hình 5, nhận thấy rằng khi tháo bỏ dần các lớp vật liệu từ TH1 đến TH7, tỉ số P/C thay đổi không đáng kể, không vượt quá 1%. Điều đó chứng tỏ rằng các vật liệu dùng làm buồng chì ít gây tán xạ trong miền Compton xét trong toàn phổ năng lượng.

Hình 5. Sự phụ thuộc của tỉ số P/C theo vật liệu tham gia che chắn và theo khoảng cách nguồn - đầu dò.

3.4. Miền năng lượng tán xạ nhiều lần

Trong phổ gamma tán xạ, miền tán xạ nhiều lần là miền nằm giữa đỉnh năng lượng toàn phần và mép Compton [13]. Đối với nguồn ¹³⁷Cs, miền tán xạ nhiều lần được chọn trong khoảng 476 - 659 keV.

	Khoảng cách nguồn - đầu dò									
Trường hợp	5	cm	10 cm		15	cm	18,76 cm			
	Gamma tán xạ	So sánh tương đối	Gamma tán xạ	So sánh tương đối	Gamma tán xạ	So sánh tương đối	Gamma tán xạ	So sánh tương đối		
TH1	636688	1,0000	228992	1,0000	116122	1,0000	78358	1,0000		
TH2	636397	0,9995	228747	0,9989	115987	0,9761	78199	0,9980		
TH3	631060	0,9912	226818	0,9905	114984	0,9902	77534	0,9895		
TH4	631052	0,9911	226852	0,9907	115066	0,9909	77566	0,9899		
TH5	630528	0,9903	226512	0,9892	114881	0,9893	77431	0,9882		
TH6	629300	0,9884	225950	0,9867	114698	0,9877	77248	0,9858		
TH7	627334	0,9853	225711	0,9857	114513	0,9861	77393	0,9877		

Bảng 5. Số gamma tán xạ trong miền tán xạ nhiều lần và phép so sánh tương đối.

Hình 6. Tỉ lệ gamma tán xạ ở miền tán xạ nhiều lần của các trường hợp vật liệu tham gia che chắn khác nhau.

Trong bảng 5, các cột 2, 4, 6 và 8 trình bày số gamma tán xạ của 7 trường hợp, các cột 3, 5, 7 và 9 trình bày phép so sánh tương đối của các trường hợp so với TH1 đối với các khoảng cách nguồn - đầu dò 5 cm, 10 cm, 15 cm và 18,76 cm. Hình 6 biểu diễn tỉ lệ gamma tán xạ ở miền tán xạ nhiều lần theo vật liệu tham gia che chắn và theo khoảng cách nguồn - đầu dò.

Từ bảng 5 nhận thấy rằng trong miền tán xạ nhiều lần, số gamma tán xạ giảm dần từ TH1 đến TH7 khi tháo bỏ dần các lớp vật liệu dùng làm buồng chì và vỏ bọc nguồn, nhưng không đáng kể. Bảng 5 và hình 6 cho thấy rằng trong miền tán xạ nhiều lần, xét TH2 và TH3, tỉ lệ gamma tán xạ thay đổi đáng kể khi so sánh với các cặp trường hợp còn lại. Điều đó chứng tỏ lớp paraffin có bề dày 6,25 cm ở nửa dưới và 4,75 cm ở nửa trên được đặt gần đầu dò nên làm cho hiện tượng tán xạ nhiều lần xuất hiện mạnh hơn.

4. KẾT LUẬN

Hiện tượng tán xạ gamma lên các vật liệu xảy ra bên trong hệ phổ kế khá phức tạp. Đối với vật liệu có bậc số nguyên tử Z cao như chì (Pb), hiện tượng tán xạ Compton sẽ giảm do hiện tượng quang điện chiếm ưu thế. Paraffin đóng vai trò quan trọng trong quá trình tán xạ. Riêng đối với lớp epoxy tiếp xúc trực tiếp với nguồn gây ra tán xạ mạnh khi nguồn ở gần đầu dò và khả năng này giảm dần theo khoảng cách. Lớp không khí có mật độ vật chất thấp nên gây tán xạ không đáng kể. Khi thay đổi vị trí của nguồn, có sự thay đổi sự phân bố không gian của các tương tác sơ cấp trong đầu dò nên số gamma tán xạ trong miền tán xạ ngược, miền Compton lẫn miền tán xạ nhiều lần giảm theo khoảng cách.

PHŲ LŲC

Một input chuẩn của chương trình máy tính MCNP4C2

Problem - Study on the influence of background shielding materials on characteristic parameters of gamma spectra using the MCNP4C2 code

c Cell cards

```
1 6-8.94 (-1-23 21):(-1-21 90) imp:p.e=1 $ loi Cu dan tin hieu
2 1 -5.35 (-55 -64 22)#1#34 imp:p=1 imp:e=0 $ cell detector
3 3 -0.00129 (1 -2 -22 21)#1#(-96 -22 21) imp:p,e=1
4 2 -2.6989 (2 -87 -83 82):(2 -3 -84 83):(2 -87 -85 84) &
:(2 -3 -86 85):(2 -87 -24 86):(2 -3 -82 21):((92 -3 -21 20)#(-95 -21 20)) &
:(92 -93 -20 89):(91 -93 -89 88) imp:p,e=1
5 3-0.00129 (-4-25 57):(87 -4 -57 86):(3 -4 -86 85):(87 -4 -85 84) &
:(3 -4 -84 83):(87 -4 -83 82):(3 -4 -82 20):(-4 -20 16)#(-93 -20 88) &
#(-95 -20 90) imp:p,e=1
6 2 -2.6989 (-5 -26 25):(4 -5 -25 16):(-5 -16 15) imp:p,e=1
11 3 -0.00129((-13 -31 30):(-11 -30 26):(5 -9 -26 19)) &
#45#46 imp:p,e=1 $ - cs40e
12 6-8.94 9-10-26 19 imp:p,e=1
13 7 -0.88 (11 -12 -30 26):(10 -12 -26 19) imp:p,e=1
14 8 -7.28 12 -13 -30 19 imp:p,e=1
15 9-11.34 (13-14-31 17):(5-14-17 16) imp:p,e=1
16 3 -0.00129 (-13 -32 31):(13 -14 -34 31) imp:p,e=1
17 8 -7.28 -13 -33 32 imp:p,e=1
18 6-8.94 -13 -34 33 imp:p,e=1
19 10 -7.86 13 -14 -35 34 imp:p,e=1
20 9 -11.34 (-14 -36 35):(-13 -35 34) imp:p.e=1
21 10 -7.86 5 -14 -16 15 imp:p.e=1
22 8 -7.28 5 -13 -18 17 imp:p,e=1
23 6 -8.94 5 -13 -19 18 imp:p,e=1
24 0 14:36:-15 imp:p,e=0
34 15 -2.31 (1 -54 -23 22):(-54 -56 23) imp:p,e=1 $ dien cuc cay ion B
35 17 -5.05 (-55 -24 64):(55 -2 -24 22) imp:p,e=1 $ dien cuc khuech tan Li - th22a25
36 18 -1.435 -87 -81 24 imp:p,e=1 $ cua so IR mylar - cs40e
45 11 -0.0899 -76 -79 78 imp:p,e=1 $ nguon Cs - cs40e
46 13 -1.15 (-77 -80 78)#45 imp:p,e=1 $ holder epoxy - cs40e
47 20 -1.11 -87 -57 81 imp:p,e=1 $ cua so IR kapton - cs40e
```

NGHIÊN CỨU ẢNH HƯỞNG CỦA VẬT LIÊU CHE CHẮN PHÔNG ...

48 21 -2.2 (1 -92 -21 90):(-92 -90 89) imp:p,e=1 \$ teflon

49 3 -0.00129 -91 -89 88 imp:p,e=1 \$ ranh khong khi cua coc Al

50 3 -0.00129 -94 -22 90 imp:p,e=1 \$ ranh khong khi cua vo boc PE

51 4 -0.92 (94 -96 -22 21):(94 -95 -21 20):(94 -95 -20 90) imp:p,e=1 \$ vo boc PE

c Surface cards

1 cz 0.352 cz 2.7 \$ cs36a 3 cz 2.776 4 cz 3.66 5 cz 3.81 9 cz 7.35 10 cz 7.95 11 cz 9.45 12 cz 14.2 13 cz 15.0 14 cz 25.0 15 pz 0.0 16 pz 1.6 17 pz 10.0 18 pz 10.8 19 pz 11.6 20 pz 19.742 21 pz 20.062 22 pz 20.815 23 pz 22.515 24 pz 24.015 25 pz 24.55 26 pz 24.7 30 pz 35.8 31 pz 43.6 32 pz 44.1 33 pz 44.5 34 pz 44.6 35 pz 46.2 36 pz 54.2 54 cz 0.3503 \$ dien cuc khuech tan Li - i42 55 cz 2.584 \$ dien cuc khuech tan Li - cs36a 56 pz 22.5153 \$ dien cuc loi B - i42 57 pz 24.026 \$ cua so IR - cs36a 64 pz 23.899 \$ dien cuc cua so Li - cs36a 76 cz 0.05 \$ hinh hoc nguon Cs (2) - cs40e 77 cz 1.27 \$ hinh hoc nguon Cs (2) - cs40e 78 pz 39.7 \$ hinh hoc nguon Cs (2) - cs40e 79 pz 39.8 \$ hinh hoc nguon Cs (2) - cs40e 80 pz 40.34 \$ hinh hoc nguon Cs (2) - cs40e 81 pz 24.016 \$ split mylar and kapton - cs40e 82 pz 21.255 \$ split the detector holder 83 pz 22.115 \$ split the detector holder 84 pz 22.415 \$ split the detector holder 85 pz 23.275 \$ split the detector holder 86 pz 23.715 \$ split the detector holder 87 cz 2.97 \$ split the detector holder 88 pz 17.536 \$ split the detector holder 89 pz 18.696 \$ split the detector holder 90 pz 19.042 \$ split the detector holder 91 cz 0.13 \$ split the detector holder 92 cz 0.88 \$ split the detector holder 93 cz 1.546 \$ split the detector holder

94 c/z 0 -2.2 0.1 \$ day dan in/out 95 c/z 0 -2.2 0.2 \$ day dan in/out 96 c/z 0 -2.2 0.49 \$ day dan in/out c Data cards mode p m1 32000 -1.0 \$ Ge m2 13000 -1.0 \$ A1 m3 7000 -0.755 8000 -0.232 18000 -0.013 \$ Atmosphere m4 1000 -0.14372 6000 -0.85628 \$ PE m6 29000 -1.0 \$ Cu m7 1000 -0.1549 6000 -0.8451 \$ Paraffin C9H20 m8 50000 -1.0 \$ Sn m9 82000 -1.0 \$ Pb m10 26000 -1.0 \$ Fe m11 1000 -1.0 \$ Cs m13 1000 -0.06 6000 -0.721 8000 -0.219 \$ Epoxy - cs40e m15 5000 -1.0 \$ B m17 32000 -0.9999 3000 -0.0001 \$ Ge Li - th22a24 m18 1000 -0.053 6000 -0.526 8000 -0.421 \$ Mylar C10H12O6 - cs40e m20 1000 -0.028 6000 -0.720 7000 -0.077 8000 -0.175 \$ Kapton C22H10N2O4 - cs40e m21 6000 -0.24 9000 -0.76 \$ Teflon (C2H4)n sdef cel=45 pos=0 0 0 axs=0 0 1 ext=d1 rad=d2 erg=0.66166 par=2 wgt=10 ft8 geb 0.00071 0.00075 0.46493 si1 h 39.7 39.8 sp1 d -21 0 si2 h 0.0 0.05 sp2 -21 1 f8:p 2 e8 0 .0001 .005471 8190i 1.942341 \$ cs40e phys:p \$ produce bremsstrahlung radiations - cs40e phys:e cut:p 2j 0 0 \$ because of taking a tally of pulse height distributions cut:e nps 90000000 ctme 120

TÀI LIỆU THAM KHẢO

[1] J. Plagnard, C. Hamon and M.C. Lépy, "Study of scattering effects in low-energy gamma-ray spectrometry," *Applied Radiation and Isotopes* (2008), 769-773.

[2] M.V. Nhơn, T.H. Loan, T.A. Khanh, T.T. Thanh và Đ.N. Phương, "Nghiên cứu ảnh hưởng tán xạ nhiều lần từ vật liệu xung quanh detector lên phổ năng lượng gamma của detector HPGe bằng chương trình MCNP," *Tạp chí phát triển Khoa học và Công nghệ, Đại học Quốc gia TPHCM* (2008), 66-77.

[3] M. Thiesse, P. Scovell and L. Thompson, "Background shielding by dense samples in low-level gamma spectrometry," *Applied Radiation and Isotopes* (2022), 110384.

[4] G. Singh, B.S. Sandhu and B. Singh, "Experimental evaluation of saturation thickness for 662 keV gamma rays in iron at different scattering angle," *Nuclear and Particle Physics Proceedings* (2023), 34-36.

[5] K.M. Katubi, R.A. Alsulami, M.M. Albarqi, Z.A. Alrowaili, I. Kebaili, V.P. Singh and M.S. Al-Buriahi, "Radiation Shielding efficiency of lead-tungsten-boron glasses with Sb, Al, and Bi against gamma, neutron and charge particles," *Applied Radiation and Isotopes* (2024), 111139.

[6] M. Tsutsumi, T. Oishi, N. Kinouchi, R. Sakamoto and M. Yoshida, "Simulation of the background for gamma detection system in the indoor environments of concrete buildings," *Journal of Nuclear Science and Technology* (2001), 1109-1114.

[7] M.G. Talavera, H. Neder, M.J. Daza and B. Quintana, "Towards a proper modeling of detector and source characteristics in Monte Carlo simulations," (2000), 777-783.

[8] I.O.B. Ewa, D. Bodizs, Sz. Czifrus and Zs. Molnar, "Monte Carlo determination of full energy peak efficiency for a HPGe detector," *Applied Radiation and Isotopes* (2001), 103-108.

NGHIÊN CỨU ẢNH HƯỞNG CỦA VẬT LIÊU CHE CHẮN PHÔNG ...

[9] M.J. Vargas, A.F. Timoùn, N.C. Díaz and D.P. Saùnchez, "Monte Carlo simulation of the self-absorption corrections for natural samples in gamma-ray spectrometry," *Applied Radiation and Isotopes* (2002), 893-898.

[10] J.C. Hardy, Iacob V.E., M.S. Vega, R.T. Effinger, P. Lipnik, V.E. Mayes, D.K. Willis and R.G. Helmer, "Precise efficiency calibration of an HPGe detector: Source measurements and Monte Carlo calculations with sub-percent precision," *Applied Radiation and Isotopes* (2002) 65-69.

[11] J.F. Briesmeister, "MCNP - A general Monte Carlo N - Particle transport code, Version 4C2," *Tech. Rep., Los Alamos National Laboratory* (2000), LA-13709-M.

[12] H. Leutz, G. Schulz and L.V. Gelderen, "Peak/total-ratios for NaI(Tl)-crystals," *Nuclear Instruments and Methods in Physics Research* (1966), 257-260.

[13] G.F. Knoll, "Radiation detection and measurement," John Wiley & Son, Inc. (2001), 30-64.

STUD YING THE INFLUENCE OF BACKGROUND SHIELDING MATERIALS ON CHARACTERISTIC PARAMETERS OF GAMMA SPECTRA USING THE MCNP4C2 CODE

VO XUAN AN

Faculty of Electronics Technology, Industrial University of Ho Chi Minh City *Corresponding author: voxuanan@iuh.edu.vn

Abstract. In gamma spectrometry, the low-background lead shield includes layers of shielding material used to reduce the gamma radiation background from the surrounding environment, but scattered gammas from these layers of shielding material can contribute and influence affects the characteristic parameters of the gamma spectra of interest. In this work, the MCNP4C2 code is used to simulate the gamma spectra for each case where the layers of material constituting the lead shield are removed from the inside out, including the material making the holder of the radioactive source. On the basis of the gamma energy spectra, Peak-to-Total ratios (P/T), Peak-to-Compton ratios (P/C) in each case are calculated to determine the influence of each material layer. The results show that, with lead having a high atomic number Z, Compton scattering is reduced due to the photoelectric effect being dominant compared to copper and tin; paraffin plays an important role in the scattering process; the epoxy layer is in direct contact with the radioactive source, causing strong scattering when the source is close to the detector and gradually decreases with distance; air has low mass density, so scattering is negligible.

Keywords. gamma spectrometer, HPGe detector, low-background lead shield.

Ngày gửi bài: 20/5/2024 Ngày chấp nhận đăng: 01/11/2024