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ABSTRACT. The response surface method (RSM) is a powerful structural reliability method using the
values of the function at specific points that approximates the limit state function with a polynomial
expression. The analytical function replaces the exact limit state function which the computational time
required for the assessment of the reliability of structural systems can be reduced significantly. However,
the location of the sample points has been investigated by several authors and the performance of the
response surface method is still under discussion. Therefore, this study proposes a new response surface
method for sensitivity estimation of parameters in structural reliability analysis. A first oder polynomial
without cross terms is adopted to approximate the limit-state function, and the sensitivity vector of the limit
state function can be obtained. A experimental design with 4n+1 sampling points includes 2n+1 sampling
points are chosen along the coordinate axes of the U-space of standard normal random variables, as in the
classic RSM and 2n sampling points is rotated according to the sensitivity vector of the limit state function
is built. A quadratic polynomial is adopted to approximate the limit-state function, and the most probable
point (MPP) can be obtained by conducting the Hasofer-Lind-Rackwitz-Fiessler (HL-RF) algorithm based
on the created response surface (RS). To further improve the precision of reliability analysis, Monte Carlo
Simulation (MCS) is conducted on the established polynomial to compute the probability of failure. Three
numerical examples are considered to demonstrate the advantages of the proposed method.

Keywords: Reliability analysis, performance measure approach, response surface method, radial basis
function, first-order reliability method, finite element method, implicit response function.

I. INTRODUCTION

The reliability analysis has been used more and more widely in structural engineering. For large and
complex engineering structures, the reliability represents the capacity of supportment for load and
environment. Therefore, how to calculate the reliability effectively has important practical significance.

Zhao et al. [1] proposed a new method, support vector regression based response surface method in
reliability analysis. The support vector regression algorithm is employed to construct the equivalent limit
state function and FORM/SORM is used in the parameter sensitivity estimation. Wang et al. [2] addressed
a approach to system reliability analysis with fuzzy random variables and two developments. The first
development is that the Saddlepoint Approximation (SAP)-simulation is extended to conduct reliability
analysis accounting for the time-dependent degradation process and fuzzy random variables, and they
attempt to give a method to select a proper saddle point. The second development is that two system
reliability analysis methods are proposed for different scenarios of reliability modeling processes. Hu and
Youn [3] presented an asymmetric dimension-adaptive tensor-product (ADATP) method to resolve the
difficulties of existing reliability analysis methods. The their method leverages three ideas: (i) an
asymmetric dimension-adaptive scheme to efficiently build the tensorproduct interpolation considering
both directional and dimensional importance, (ii) a hierarchical interpolation scheme using either piecewise
multi-linear basis functions or cubic Lagrange splines, (iii) a hierarchical surplus as an error indicator to
automatically detect the highly nonlinear regions in a random space and adaptively refine the collocation
points in these regions. Guan et al. [4] presented an efficient analytical Bayesian method for reliability and
system response updating without using simulations. The method includes additional information such as
measurement data via Bayesian modeling to reduce estimation uncertainties. Laplace approximation
method is used to evaluate Bayesian posterior distributions analytically. An efficient algorithm based on
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inverse first- order reliability method is developed to evaluate system responses given a reliability index or
confidence interval. Allaix and Carbone [5] proposed an improvement of the response surface method. An
iterative strategy is used to determine a response surface that is able to fit the limit state function in the
neighbourhood of the design point. The locations of the sample points used to evaluate the free parameters
of the response surface are chosen according to the importance sensitivity of each random variable. Liu [6]
utilized Hermite polynomial chaos expansion to build the stochastic response surface function, and the
unknown coefficients of the function can be calculated by probabilistic collocation approach. Then, the
geometric method can be used to calculate the structural reliability.

Okasha et al. [7] illustrated an approach for updating the lifetime reliability of aging bridges using
monitored strain data obtained from crawl tests. It is proposed to use automated finite element model
updating techniques as a tool for updating the resistance parameters of the structure. The results from crawil
tests are used to update the finite element model and, in turn, update the lifetime reliability. The original
and updated lifetime reliabilities are computed using advanced computational tools.

Kingston et al. [8] used an artificial neural network as a response surface function to efficiently emulate the
complex finite element model within a Monte Carlo simulation. To ensure the successful and robust
implementation of this approach, a genetic algorithm adaptive sampling method is designed and applied to
focus sampling of the implicit limit state function towards the limit state region in which the accuracy of
the estimated response is of the greatest importance to the estimated structural reliability.

Jiang et al [9] proposed and create a correlation analysis technique mathematically for the non-probabilistic
convex model, and based on it develop an effective method to construct the multidimensional ellipsoids on
the uncertainty. A marginal convex model is defined to describe the variation range of each uncertain
parameter, and a covariance is defined to represent the correlation degree of two uncertain parameters. For
a multidimensional problem, the covariance matrix and correlation matrix can be created through all
marginal convex models and covariances, based on which the required ellipsoid on the uncertainty can be
conveniently achieved. By combining the correlation analysis technique and the reliability index approach,
a non-probabilistic reliability analysis method is also developed for uncertain structures.

Weitao Zhao and Zhiping Qiu [10] proposed the control point of experimental points is constructed. The
new center point of experimental points is chosen by using the control point instead of the design point.
The control point can guarantee that the center point of experimental points lies exactly on the failure
surface and is close to the actual design point.

Yanjun Ou et al [11] explored a response surface method for reliability analysis based on iteratively-
reweighted-leastsquare extreme learning machines (IRLS-ELM) in which, highly nonlinear implicit
performance functions of structures are approximated by the IRLS-ELM. Monte Carlo simulation is then
carried out on the approximate IRLS-ELM for structural reliability analysis.

The main aspect of this paper is discussed in the following: the location of the sample points, the
polynomial degree of the response surface and the estimation of the probability of failure. First, a response
surface provides a local approximation of the limit state function in the neighbourhood of the sample points.
Hence the distance between the sample points determines the region where the approximation is expected
to be accurate. Of course, the accuracy depends also on the type of response surface and limit state function.

The sample points in the U-space of the standard normal variables are located in the centre of the
experimental plan and along the coordinate axes. The distance between the central point and the other points
is denoted by the parameter f. If the value of f is large, the response surface interpolates points in the U-
space which are quite distant. Therefore, fluctuations of the limit state function between the points may not
be reproduced by the response surface. Conversely, if the value of f is low, the response surface can
represent appropriately only a small portion of the LSF.

2. MATERIALS AND METHODS

2.1 Structural reliability formulation

The performance or safety of the structure can be described by limit state functions g(X) = 0, which
divide the random variable domain in safety and failure domains. The boundary between safety and failure
domains is known as failure surface. The failure probability is given by the following multidimensional
integral:
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(X)dX 1)

where fy(X) is the joint probability density function of the random variables. It can be solved directly,
via using approximate solutions, or Monte Carlo simulation.

The most popular approximate solution is the First Order Reliability Method (FORM). In this solution,
the vector of random variables X and the limit state functions are mapped to the standard normal space U,
in a transformation that involves rotation of coordinates and evaluation of equivalent normal distributions.
In the space of U the joint probability density function f,(U) presents radial symmetry, and the most
probable failure point, or design point U can be found by solving the following optimization problem:

Which min  g=+U'U @)
Subjectto  g(U)=0
The minimal distance between design point U and the origin of U space is known as Reliability Index

B. A linearization of the limit state function at the design point yields the first order approximation of the
failure probability:

P, = f
o Jg<0 X

Pr =0 (=) ©)
where U is the standard normal cumulative distribution function.

The problem in Eq. (2) can be solved using HLRF algorithm. When failure probabilities are small,
solution of the reliability problem by FORM, Egs. (2) and (3), represents enormous savings in computing
time, as compared with Monte Carlo simulation. The computational cost of a FORM solution, however, is
still a few times that of a single, deterministic (numerical) solution. The cost of a reliability analysis using
FORM is directly proportional to the size of the random variable space, and to the number of limit state
functions. Hence, it is important to consider as random variables only those which present significant
contribution to failure probabilities. Sensitivity coefficients can be used to identify these variables.

2.2 Slection of the sampling points
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Figure 1: Propossed response surface Figure 2: Experimental plan is illustrated for two

random variables

The coordinate of the design point are P1(pu,112) and the reliability index B is equal to \/u” +u5 (Fig.1).

01(X1,X2) is the fisrt order approximation function and g(X1,Xz) is the second order approximation function.
A quadratic response surface is built considering the design point P; as centre of the experimental
phan. The coordinate of the sampling points are (Fig 2)
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where >0 is the parameter that identifies the points of the grid and o; are standard deviations.
2.3 Compute the sensitivity vector a

The limit state function approximated by the following

09,(U) =a, +Zaiui 4)
i=1
The coefficients ay, a; are the solution of the following system of equations
AiM=B; (5)

Where A, is the matrix of the coefficients, A1 is the vector of the unknowns ao, ai and B is vector of the
values of the limit state function in the sampling loints

1 H H;
1 p—fo, H;
A =1 u+fo, y7a (6)

1 H H, — fo,
11 H ty + fo, |
The vector a is a evaluated on the basis of the gradient vector Vg of the response surface in the
U_space.

A )
Iv.4l
The angle 0 can be derived from the sensitivity vector o (Fig. 5.2).
a, =cos@)
g(u1’u2):ao+aiu1+a2uz ©)
where ap,a;,a; are positive constants.
The design point Py is located at
a a,a
P]_( 20a12, 20 ZZJ (10)
a +a, a +a,
and the vector a has the following components
gl
,/af + 3.22 (11)
a, = %

Val +a;

2.4 RSM-based reliability analysis

The limit state function for a complex structure is an implicit limit state function of the basic random
variables X. Their relationship can only be determined through a numerical algorithm, such as the finite
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element method (FEM). In the response surface method, the actual limit state function g(X) is replaced by
a polynomial type of function g(X). A quadratic polynomial RS without cross terms is used to approximate
the actual limit-state function

g,(U)=b, +Zn:biui +Zn:biiui2 (12)
i1 i1

where n is the number of random variables X, the unknown coefficients b, bi and bji are the solution of the
following system of equations

A27\.2=Bz (13)
where A; is the matrix of the coefficients, A, is the vector of the unknowns by, bj, bii and B. is vector of the
values of the limit state function in the sampling loints

1 t 1, I I

1 w-fo Hy (1~ foy)? %

1 w+fo Hy (1 + foy)? I

1 H H, — fo, :ulz (4~ fo,)’° (14)

A, =|1 H Hy + fo, py (1, + fo,)*

1 w-fo,cos0 p,+fosing (4 - fo,cos0)* (u,+ fo,sing)?

1 u+fo,sind u,+fo,co80 (u+fo,sind)’ (u,+ fo,cosd)’

1w +focos0 w,—fosing  (u+ fo,cos0)>  (u, - fo,sinH)?

11 w-fo,sind u,-fo,cos0 (u-fo,sind)? (u,- fo,cosh)
Based on the constructed RS, an approximate reliability index g can be computed by solving the
following optimization problem

2

Min U]
Subject b g(X(U))=0
By applying the HLRF algorithm to solve Eq.12), the approximate reliability index /£ , probability
failure Prand corresponding design point Xp can be efficiently obtained since the structural responses and
corresponding gradients can be calculated. To improve the precision of structural reliability analysis, a
sequential framework is usually employed to update the RS through relocating the sampling center using
the following linear interpolation. This updating strategy generally can produce a closer point to the actual
limit-state function and whereby improve the convergence speed. The process is repeated until the
following criterion is satisfied. Accordingly, the numerical procedure of the proposed method is illustrated
in Fig.3. Use the design point Xp to find a new centre point X for the second interpolation. The new centre
point Xwm is chosen on a straight line from the mean vector of X to Xp.

X, = X + Xo=X)0(X) (16)
9(X)-9(Xp)

As shown in Eq. (12), the function g(X) represents the actual function g(X) along the coordinate axes
Xi. Hence, the points required to obtain g(X) can then be chosen along the axes X; as the point at the mean
vector X of the random variables X; and 2*n points with coordinates X=p*kici in which k; is an arbitrary
factor and p; and o; are the mean and standard deviation of X; and 2*n points is rotated according to the
sensitivity vector of the limit state function, respectively (see Fig. 1). Next, the original limit state function
is evaluated at the 4*n+1 selected points. A set of linear equations is then formed by using the 4*n+1 values

of function g(X) at the selected points.

(15)

2.5 Numerical procedure of the proposed method

An iterative procedure is coupled with the response surface in order to achieve a satisfactory
approximation of the limit state function (LSF) in the neighbourhood of the design point. This point is
determined according to the FORM, evaluating a new response surface and using it at each iteration to
predict the new solution.
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The limit state function g(X)

The iterative procedure is the following:
Step 1. Select random variables X and define -
the state function g(X) according to the N
engineering problem

Step 2. Approximate the limit state function v
with a first order response surface Linear approximation of limit function

Step 3. Compute the gradient V, g (u) of the 5.(0) -2+
response surface =

Generate 2*n+1 experimental points

Step 4. Compute the sensitivity vector o v
Step 5. Generate 4*n+1 experimental points Computate the sensitivity vector o
Step 6. Approximate the limit state function v

with a second order response surface Generate 4*n+1 experimental points
Step 7. Compute the reliability index 3 7

Step 8. Check the convergence
Step 9. Estimate the probability of failure by

Quadratic approximation of limit function

the importance sampling technique. d,(U) =b, +Zn:biui +Zn:b“uf
i=1 i=1
v

Computate the reliability index

Check the
convergence

Estimate the probability of failure by
the importance sampling technique

Figure 3. Flowchart of the proposed method

3. Numerical models

3.1 A hypothetical nonlinear limit state

The hypothetical nonlear limit state function is defined as
g(X) =exp[0.4(X, +2)+6.2] —exp[0.3X, +5.0] - 200 17
where X; and X; are assumed to be independent and have a standard normal distribution with zero mean
and unit standard deviation. The reliability analysis performed by using Directional MCS with 10® samples
yields 3.623x107, and the corresponding reliability index g = 2.685 [12], which are regarded as the exact
referenced solution.

The estimates of the reliability estimates strongly depend on the choice of the parameter f in the case of
the conventional RSM and the proposed method. The results and relative error of the three methods are
shown in Table 1 by MCS, the proposed method and traditional RSM. It can be seen that the analysis results
of the proposed method are all very close to the exact ones. Propossed method can obtain more accurate Pt
results than traditional RSM.

Comparison is made between the proposed method and the conventional sequential RSM in terms of
accuracy and efficiency as shown in Table 1. It can be found that the conventional RSM shows a 7.121%,
7.204%, 7.508%, 8.198% deviation for the probability of failure and 0.931%, 0.894%, 0.968%, 1.08% error
for the reliability index, whereas the proposed method exhibits only 0.028%, 0.11 %, 0.083%, 0.00%
and ).00%, 0.037%, 0.037%, 0.00% respectively, which indicates that the present method is more efficient.
Table 1: Results of the reliability analysis of a hypothetical nonlinear limit state

Method Failure Relative Reliability Relative
probability Ps error Ps index error f
MCS 3.623x10° 2.685 —
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RSM (f=1) 3.365x10°3 7.121% 2.709 0.894%
RSM (f=2) 3.362x10°3 7.204% 2.710 0.931%
RSM (f=3) 3.351x10°3 7.508% 2.711 0.968%
RSM (f=4) 3.326x10° 8.198% 2.714 1.080%
Proposed method (f=1) 3.622x10° 0.028% 2.685 0.000%
Proposed method (f=2) 3.619x10°3 0.110% 2.686 0.037%
Proposed method (f=3) 3.620x10°3 0.083% 2.686 0.037%
Proposed method (f=4) 3.623x10°3 0.000% 2.685 0.000%
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Figure 4: Convergence histories of reliability Figure 5: Convergence histories of variable X(1)
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Figure 6: Convergence histories of variable X(2) Figure 7: Convergence histories of reliability
for a hypothetical nonlinear limit state index for a hypothetical nonlinear limit state

Convergence histories for random variables X, X, and for reliability index g are presented in Fig. 4,
Fig. 5, Fig. 6. Each of the two methods is run another 6 times, respectively, and the estimated reliability
indexes are shown in Fig.4. Failure probability results obtained for problem are presented in Table 1.
Convergence results presented in Fig. 4, Fig. 5, Fig. 6 compare the histories of the reliability index per
iteration of each method. The histories are ploted until satisfaction of the convergence iteration. It can be
seen that the random variables X1, Xz and reliability index g provided by the proposed method converges
faster to the exact value than the traditional RSM. The difference in the first reliability index is due to the
number of initial experimental points selected in each of these methods. Traditional RSM starts with 2n+1
experimental points while the proposed method starts with 4n+1 experimental points. Table 1 and Fig. 4,
Fig. 5, Fig. 6 compares the reliability index and failure probability resulting from both the traditional RSM
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and the proposed method with the different parameters f. The reliability index and failure probability are
also presented to examine the accuracy of the structural reliability analysis results.

3.2 Cantilever beam

This section concerns the deflection limit state of a cantilever beam with rectangular cross section,
subject to a uniformly distributed load [13]. The limit state function is written in terms of the maximum
vertical deflection of the free end of the beam and a limit value equal to 1/325, is defined by

4
__wlt 1 (18)
8ElI 325

where w, b, I, E and | are respectively w is the load per unit area, b is the width of the cross section, I is the
length of the beam, E is the elastic modulus and I is the moment of inertia of the cross section. The random
variables are the load w per unit area and the depth of the cross section are represented respectively by the
random variables X1~N(1000,200) and X, ~N(250,37.5). The modulus of elasticity E and the length | are

assumed, respectively, equal to 2 x10*MPa and 6m, the limit state function reduces to

g(X) =18.46154 — 74769 .23 % (19)
2
where X; is the load in MPa and X: is the depth im mm. The load is assumed to be normal distributed, with
a mean ;1=1000N/m? and a standard deviation D;=200. The depth is also normally distributed, with
12=250mm and D,=37.5.

The exact solution using importance sampling with 10® simulations is 9.533x107. The estimates of the
reliability estimates strongly depend on the choice of the parameter f in the case of the conventional RSM
and the proposed method. The results and relative error of the three methods are shown in Table 2 by MCS,
the proposed method and traditional RSM. It can be seen that the analysis results of the proposed method
are all very close to the exact ones. Propossed method can obtain more accurate Pf results than traditional
RSM.

Comparison is made between the proposed method and the conventional sequential RSM in terms of
accuracy and efficiency as shown in Table 2. It can be found that the conventional RSM shows a 2.349%,
3.546%, 2.602%, 2.895% deviation for the probability of failure and 0.341%, 0.555%, 0.384%, 0.469%
error for the reliability index, whereas the proposed method exhibits only 0.357%, 0.304%, 0.629%, 0.053%
and 0.085%, 0.043%, 0.128%, 0.000% respectively, which indicates that the present method is more
efficient.

Table 2: Results of the reliability analysis of cantilever beam

Failure Relative Reliability Relative
Method probability Ps error Pt index error f

MCS 9.533x10° — 2.344 —
RSM (f=1) 9.757x103 2.349% 2.336 0.341%
RSM (f=2) 9.871x103 3.546% 2.331 0.555%
RSM (f=3) 9.781x10°3 2.602% 2.335 0.384%
RSM (f=4) 9.257x1073 2.895% 2.355 0.469%
Proposed method (f=1) | 9.499x1073 0.357% 2.346 0.085%
Proposed method (f=2) | 9.504x1073 0.304% 2.345 0.043%
Proposed method (f=3) | 9.473x1073 0.629% 2.347 0.128%
Proposed method (f=4) | 9.538x1073 0.053% 2.344 0.000%
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Figure 8: Convergence histories of failure Figure 9: Linear portal frame

probability for cantilever beam

Convergence histories for failure probability Prand for reliability index g are presented in Fig. 7, Fig.
8. Each of the two methods is run another 8 times, respectively, and the estimated reliability indexes are
shown in Fig.6. Failure probability results obtained for problem are presented in Table 2. Convergence
results presented in Fig. 7, Fig. 8 compare the histories of the reliability index per iteration of each method.
The histories are ploted until satisfaction of the convergence iteration. It can be seen that the failure
probability Prand reliability index g provided by the proposed method converges faster to the exact value
than the traditional RSM. The difference in the first reliability index is due to the number of initial
experimental points selected in each of these methods. Traditional RSM starts with 2n+1 experimental
points while the proposed method starts with 4n+1 experimental points. Table 2 and Fig. 7, Fig. 8 compares
the reliability index and failure probability resulting from both the traditional RSM and the proposed
method with the different parameters f. The reliability index and failure probability are also presented to
examine the accuracy of the structural reliability analysis results.

3.3 Linear portal frame

This engineering application is a linear frame structure one story and one bay as shown in Fig.9.
Different cross sectional areas Ai and horizontal load P are treated as independent random variables, their
statistics are listed in Table 3. The sectional moments of inertia expressed as

l, =a,A’ (o, =0.0833, @, =0.16670) . The Young’s modulus is treated as deterministic

E =2x10°kN / m?,
The limit state function is expressed
g(X)=0.01-u, (20)
where uy denotes the max horizontal displacement as the function of basic random variables. The limit state
function is implicit, and the structural response has to be calculated by using the FEM. The reliability index
and failure probability calculated by the proposed method is compared with the MCS result with the exact
solution P, =0.2322x107 and its corresponding reliability index /3 =2.834 [14]. The results and

relative error of the three methods are shown in Table 5.4 by MCS, the proposed method and traditional
RSM. It can be seen that the analysis results of the proposed method are all very close to the exact ones.
Propossed method can obtain more accurate Pf results than traditional RSM.

Comparison is made between the proposed method and the conventional sequential RSM in terms of
accuracy and efficiency as shown in Table 1. It can be found that the conventional RSM shows a 7.121%,
7.204%, 7.508%, 8.198% deviation for the probability of failure and 0.931%, 0.894%, 0.968%, 1.08% error
for the reliability index, whereas the proposed method exhibits only 0.028%, 0.11 %, 0.083%, 0.00%
and ).00%, 0.037%, 0.037%, 0.00% respectively, which indicates that the present method is more efficient.

77



AN EFFICIENT RESPONSE SURFACE TECHNIQUE FOR SENSITIVITY ...

0.335

—<— Propossed method (f=1)
—4— Propossed method (f=2) H
—&— Propossed method (f=3)
—+— Traditional RSM (f=1) H
—6— Traditional RSM (f=2)
—%— Traditional RSM (f=3) [

0.176

|
I\
\

—— Propossed method (f=1)
—&— Propossed method (f=2) [T

0.315 0.174

—4— Propossed method (f=3)

A\
<o \\\S ‘ — S 017 —+— Traditional RSM (f=1) ||
0.0 X AT —#— Traditional RSM (f=2)
\\\/ —©— Traditional RSM (f=3)
W\ A\
0.295 \6 / 0.168
029 \\ —
3{ 0166
1 2 3 4 5 6 7 8 9 10 11 V
Iterations 0.164
1 2 3 4 5 6 7 8 9 10 11

Iterations

Figure 11: Convergence histories of variable A(2)

Figure 10: Convergence histories of variable
for linear portal frame

A(2) for linear portal frame

Table 3: Random properties of linear portal frame

Variable Mean Standard deviation Unit Distribution
A 0.360 0.036 m? lognormal
Az 0.180 0.018 m? lognormal
P 20.000 5.000 kN Type | largest
Table 4: Results of the reliability analysis for linear portal frame
Method Failure Relative Reliability Relative
probability Py error Ps index error
MCS 2.409%10° — 2.819 —
RSM (f=1) 0.614x10°3 74.512% 3.233 14.686%
RSM (f=1.5) 0.610x10°3 74.678% 3.234 14.723%
RSM (f=2) 0.599x1073 75.135% 3.239 14.899%
RSM (f=2.5) 0.575x10°3 76.131% 3.251 15.325%
Proposed method (f=1) 2.373x10°® 1.494% 2.824 0.177%
Proposed method (f=1.5) 2.360x10°3 2.034% 2.826 0.248%
Proposed method (f=2) 2.361x10°3 1.993% 2.826 0.248%
Proposed method (f=2.5) 2.349x10°3 2.491% 2.827 0.284%
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Figure 12: Convergence histories of variable P for Figure 13: Convergence histories of reliability
linear portal frame index for linear portal frame

Convergence histories for random variables A1, A, and P and for reliability index g are presented in Fig.
10, Fig. 11, Fig. 12 and Fig. 13. Each of the two methods is run another 11 times, respectively, and the
estimated reliability indexes are shown in Fig.13. Failure probability results obtained for problem are
presented in Table 4. Convergence results presented in Fig. 10, Fig. 11, Fig. 12 and Fig. 13 compare the
histories of the reliability index per iteration of each method. The histories are ploted until satisfaction of
the convergence iteration. It can be seen that the random variables A1, A», P and reliability index 4 provided
by the proposed method converges faster to the exact value than the traditional RSM. The difference in the
first reliability index is due to the number of initial experimental points selected in each of these methods.
Traditional RSM starts with 2n+1 experimental points while the proposed method starts with 4n+1
experimental points. Table 4 and Fig. 10, Fig. 11, Fig. 12 and Fig. 13 compares the reliability index and
MPP resulting from both the traditional RSM and the proposed method with the different parameters f. The
reliability index and MPP are also presented to examine the accuracy of the structural reliability analysis
results.

4. CONCLUSION

An efficient response surface technique is proposed for sensitivity estimation of parameters in structural
reliability analysis. At each iteration, the response surface is built after locating 4n+1 sampling points
includes 2n+1 sampling points are chosen along the coordinate axes of the U-space of standard normal
random variables, as in the classic RSM and 2n sampling points is rotated according to the sensitivity vector
of the limit state function. An adaptive procedure in combination with the FORM method is adopted to
build successive response surfaces until the convergence. Then, the probability of failure can be computed
applying the importance sampling Monte Carlo technique. A better approximation of a limit state function
with a reasonable computational effort is the objective of the proposed method. The numerical models
showed that the proposed method is able to reach a better approximation in the evaluation of probability of
failure than the traditional RSM.
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MOT KY THUAT BE MAT PHAN UNG HIEU QUA PE TiNH PQ NHAY TRONG
PHAN TiCH PO TIN CAY KET CAU

CHAU MINH QUANG
Vién Pao tao quoc té va Sau Pai hoc — T ruong Pai hoc Cong nghiép Thanh phé' Ho6 Chi Minh
*Tdc gid lién hé: chauminhquang@iuh.edu.vn

Tém tit. Phwong phap RSM 1a mot phuong phap c6 do tin cdy vé két cdu manh mé& sir dung céac gia tri
ctia ham tai cac diém cu thé gin ding voi ham trang thai gidi han bang biéu thirc da thirc. Ham phan tich
thay thé ham trang thai giéi han chinh x4c ma thoi gian tinh toan can thiét dé danh gia do tin cy ciia hé két
céu c6 thé giam dang ké. Tuy nhién, vi tri cia cac diém mau di duoc mot sb tac gia nghién ctru va hidu qua
ctia phuong phap bé mit dap tmg van dang duoc thao luan. Vi vy, nghién ctru ndy dé xuit mot phuong
phap bé mat dap img mai dé tinh d6 nhay cua cac tham s trong phan tich d tin cy két cau. Pa thuc thi
nhit khong c6 s6 hang chéo dugc sir dung dé tinh gan ding ham trang thai gidi han va c6 thé thu duoc
vecto do nhay cua ham trang thai gioi han. Thiét ké thuc nghiém véi 4n+1 diém léy mau bao gém 2n+1
diém léy mau duoc chon doc theo cac truc toa do trong khong gian U cua cac bién ngau nhién chuén, nhu
trong mé hinh RSM ¢4 dién va 2n diém ldy miu dugc quay theo vecto do nhay ciia ham trang thai gidi han
duoc xay dung. Mot da thic bac hai dugc st dung dé tinh gﬁn ding ham trang thai giéi han va cé thé thu
duoc diém co xac suit 16n nhat (MPP) b'fmg cach tién hanh thuat toan HL-RF duya trén RS d3 tao. Dé cai
thién hon nita do chinh x4c ctia phan tich do tin cy, M6 phong Monte Carlo (MCS) duoc tién hanh trén da
thirc da thiét 1ap dé tinh xac suét that bai. Cac md hinh sé dugc xét dé ching minh nhitng wu diém cua
phuong phap duoc dé xuit.

Keywor‘ds: phén tich d9 tin cdy, phuong phép bé mit dap ung, phuong phap do tin ciy bac nhét, phuong
phap phan tir hitu han, ham phan h6i ngam.
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