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ABSTRACT. The response surface method (RSM) is a powerful structural reliability method using the 

values of the function at specific points that approximates the limit state function with a polynomial 

expression. The analytical function replaces the exact limit state function which the computational time 

required for the assessment of the reliability of structural systems can be reduced significantly. However, 

the location of the sample points has been investigated by several authors and the performance of the 

response surface method is still under discussion. Therefore, this study proposes a new response surface 

method for sensitivity estimation of parameters in structural reliability analysis. A first oder polynomial 

without cross terms is adopted to approximate the limit-state function, and the sensitivity vector of the limit 

state function can be obtained. A experimental design with 4n+1 sampling points includes 2n+1 sampling 

points are chosen along the coordinate axes of the U-space of standard normal random variables, as in the 

classic RSM and 2n sampling points is rotated according to the sensitivity vector of the limit state function 

is built. A quadratic polynomial is adopted to approximate the limit-state function, and the most probable 

point (MPP) can be obtained by conducting the Hasofer-Lind-Rackwitz-Fiessler (HL-RF) algorithm based 

on the created response surface (RS). To further improve the precision of reliability analysis, Monte Carlo 

Simulation (MCS) is conducted on the established polynomial to compute the probability of failure. Three 

numerical examples are considered to demonstrate the advantages of the proposed method. 

Keywords: Reliability analysis, performance measure approach, response surface method, radial basis 

function, first-order reliability method, finite element method, implicit response function. 

I. INTRODUCTION 

The reliability analysis has been used more and more widely in structural engineering. For large and 

complex engineering structures, the reliability represents the capacity of supportment for load and 

environment. Therefore, how to calculate the reliability effectively has important practical significance. 

Zhao et al. [1] proposed a new method, support vector regression based response surface method in 

reliability analysis. The support vector regression algorithm is employed to construct the equivalent limit 

state function and FORM/SORM is used in the parameter sensitivity estimation. Wang et al. [2] addressed 

a approach to system reliability analysis with fuzzy random variables and two developments. The first 

development is that the Saddlepoint Approximation (SAP)-simulation is extended to conduct reliability 

analysis accounting for the time-dependent degradation process and fuzzy random variables, and they 

attempt to give a method to select a proper saddle point. The second development is that two system 

reliability analysis methods are proposed for different scenarios of reliability modeling processes. Hu and 

Youn [3] presented an asymmetric dimension-adaptive tensor-product (ADATP) method to resolve the 

difficulties of existing reliability analysis methods. The their method leverages three ideas: (i) an 

asymmetric dimension-adaptive scheme to efficiently build the tensorproduct interpolation considering 

both directional and dimensional importance, (ii) a hierarchical interpolation scheme using either piecewise 

multi-linear basis functions or cubic Lagrange splines, (iii) a hierarchical surplus as an error indicator to 

automatically detect the highly nonlinear regions in a random space and adaptively refine the collocation 

points in these regions.  Guan et al. [4] presented an efficient analytical Bayesian method for reliability and 

system response updating without using simulations. The method includes additional information such as 

measurement data via Bayesian modeling to reduce estimation uncertainties. Laplace approximation 

method is used to evaluate Bayesian posterior distributions analytically. An efficient algorithm based on 
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inverse first- order reliability method is developed to evaluate system responses given a reliability index or 

confidence interval. Allaix and Carbone [5] proposed an improvement of the response surface method. An 

iterative strategy is used to determine a response surface that is able to fit the limit state function in the 

neighbourhood of the design point. The locations of the sample points used to evaluate the free parameters 

of the response surface are chosen according to the importance sensitivity of each random variable. Liu [6] 

utilized Hermite polynomial chaos expansion to build the stochastic response surface function, and the 

unknown coefficients of the function can be calculated by probabilistic collocation approach. Then, the 

geometric method can be used to calculate the structural reliability. 

Okasha et al. [7] illustrated an approach for updating the lifetime reliability of aging bridges using 

monitored strain data obtained from crawl tests. It is proposed to use automated finite element model 

updating techniques as a tool for updating the resistance parameters of the structure. The results from crawl 

tests are used to update the finite element model and, in turn, update the lifetime reliability. The original 

and updated lifetime reliabilities are computed using advanced computational tools. 

Kingston et al. [8] used an artificial neural network as a response surface function to efficiently emulate the 

complex finite element model within a Monte Carlo simulation. To ensure the successful and robust 

implementation of this approach, a genetic algorithm adaptive sampling method is designed and applied to 

focus sampling of the implicit limit state function towards the limit state region in which the accuracy of 

the estimated response is of the greatest importance to the estimated structural reliability. 

Jiang et al [9] proposed and create a correlation analysis technique mathematically for the non-probabilistic 

convex model, and based on it develop an effective method to construct the multidimensional ellipsoids on 

the uncertainty. A marginal convex model is defined to describe the variation range of each uncertain 

parameter, and a covariance is defined to represent the correlation degree of two uncertain parameters. For 

a multidimensional problem, the covariance matrix and correlation matrix can be created through all 

marginal convex models and covariances, based on which the required ellipsoid on the uncertainty can be 

conveniently achieved. By combining the correlation analysis technique and the reliability index approach, 

a non-probabilistic reliability analysis method is also developed for uncertain structures. 

Weitao Zhao and Zhiping Qiu [10] proposed the control point of experimental points is constructed. The 

new center point of experimental points is chosen by using the control point instead of the design point. 

The control point can guarantee that the center point of experimental points lies exactly on the failure 

surface and is close to the actual design point. 

Yanjun Ou et al [11] explored a response surface method for reliability analysis based on iteratively-

reweighted-leastsquare extreme learning machines (IRLS-ELM) in which, highly nonlinear implicit 

performance functions of structures are approximated by the IRLS-ELM. Monte Carlo simulation is then 

carried out on the approximate IRLS-ELM for structural reliability analysis. 

The main aspect of this paper is discussed in the following: the location of the sample points, the 

polynomial degree of the response surface and the estimation of the probability of failure. First, a response 

surface provides a local approximation of the limit state function in the neighbourhood of the sample points. 

Hence the distance between the sample points determines the region where the approximation is expected 

to be accurate. Of course, the accuracy depends also on the type of response surface and limit state function.  

The sample points in the U-space of the standard normal variables are located in the centre of the 

experimental plan and along the coordinate axes. The distance between the central point and the other points 

is denoted by the parameter f. If the value of f is large, the response surface interpolates points in the U-

space which are quite distant. Therefore, fluctuations of the limit state function between the points may not 

be reproduced by the response surface. Conversely, if the value of f is low, the response surface can 

represent appropriately only a small portion of the LSF. 

2. MATERIALS AND METHODS 

2.1 Structural reliability formulation 

The performance or safety of the structure can be described by limit state functions g(X) = 0, which 

divide the random variable domain in safety and failure domains. The boundary between safety and failure 

domains is known as failure surface. The failure probability is given by the following multidimensional 

integral: 
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where fx(X) is the joint probability density function of the random variables. It can be solved directly, 

via using approximate solutions, or Monte Carlo simulation.  

The most popular approximate solution is the First Order Reliability Method (FORM). In this solution, 

the vector of random variables X and the limit state functions are mapped to the standard normal space U, 

in a transformation that involves rotation of coordinates and evaluation of equivalent normal distributions. 

In the space of U the joint probability density function fu(U) presents radial symmetry, and the most 

probable failure point, or design point U can be found by solving the following optimization problem: 

0g(U)       to

UUmin      T





Subject

Which                                                                (2) 

The minimal distance between design point U* and the origin of U space is known as Reliability Index 

β. A linearization of the limit state function at the design point yields the first order approximation of the 

failure probability: 

)(Pf                                                                             (3) 

where U is the standard normal cumulative distribution function. 

The problem in Eq. (2) can be solved using HLRF algorithm. When failure probabilities are small, 

solution of the reliability problem by FORM, Eqs. (2) and (3), represents enormous savings in computing 

time, as compared with Monte Carlo simulation. The computational cost of a FORM solution, however, is 

still a few times that of a single, deterministic (numerical) solution. The cost of a reliability analysis using 

FORM is directly proportional to the size of the random variable space, and to the number of limit state 

functions. Hence, it is important to consider as random variables only those which present significant 

contribution to failure probabilities. Sensitivity coefficients can be used to identify these variables. 

2.2 Slection of the sampling points 
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Figure 1: Propossed response surface Figure 2: Experimental plan is illustrated for two 

random variables 

The coordinate of the design point are P1(μ1,μ2) and the reliability index β is equal to 
2

2

2

1 μμ   (Fig.1). 

g1(X1,X2) is the fisrt order approximation function and g2(X1,X2) is the second order approximation function. 

A quadratic response surface is built considering the design point P1 as centre of the experimental 

phan. The coordinate of the sampling points are (Fig 2) 
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where f>0 is the parameter that identifies the points of the grid and σi are standard deviations.  

2.3 Compute the sensitivity vector α 

The limit state function approximated by the following 

i
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iuaag 
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01 )(~ U                                                                     (4) 

The coefficients a0, ai are the solution of the following system of equations 

A1λ1=B1                                                                                                                      (5) 

Where A1 is the matrix of the coefficients, λ1 is the vector of the unknowns a0, ai and B1 is vector of the 

values of the limit state function in the sampling loints 
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The vector α is a evaluated on the basis of the gradient vector gu
~  of the response surface in the 

U_space. 
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The angle θ can be derived from the sensitivity vector α (Fig. 5.2). 
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where a0,a1,a2 are positive constants.  

The design point P1 is located at 
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and the vector α has the following components 
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2.4  RSM-based reliability analysis 

The limit state function for a complex structure is an implicit limit state function of the basic random 

variables X. Their relationship can only be determined through a numerical algorithm, such as the  finite 

https://www.sciencedirect.com/topics/mathematics/finite-element-method
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element method (FEM). In the response surface method, the actual limit state function g(X) is replaced by 

a polynomial type of function X)(~g . A quadratic polynomial RS without cross terms is used to approximate 

the actual limit-state function 
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where n is the number of random variables X, the unknown coefficients b0, bi and bii are the solution of the 

following system of equations 

A2λ2=B2                                                                                                                      (13)  

where A2 is the matrix of the coefficients, λ2 is the vector of the unknowns b0, bi, bii and B2 is vector of the 

values of the limit state function in the sampling loints 
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Based on the constructed RS, an approximate reliability index β can be computed by solving the 

following optimization problem 

0(X(U))g~     oSubject  t

Min   



U             
                                                          (15) 

By applying the HLRF algorithm to solve Eq.12), the approximate reliability index β , probability 

failure Pf and corresponding design point XD can be efficiently obtained since the structural responses and 

corresponding gradients can be calculated. To improve the precision of structural reliability analysis, a 

sequential framework is usually employed to update the RS through relocating the sampling center using 

the following linear interpolation. This updating strategy generally can produce a closer point to the actual 

limit-state function and whereby improve the convergence speed. The process is repeated until the 

following criterion is satisfied. Accordingly, the numerical procedure of the proposed method is illustrated 

in Fig.3. Use the design point XD to find a new centre point XM for the second interpolation. The new centre 

point XM is chosen on a straight line from the mean vector of X to XD. 
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As shown in Eq. (12), the function X)(~g  represents the actual function g(X) along the coordinate axes 

Xi. Hence, the points required to obtain X)(~g  can then be chosen along the axes Xi as the point at the mean 

vector X of the random variables Xi and 2*n points with coordinates Xi=μi±kiσi in which ki is an arbitrary 

factor and μi and σi are the mean and standard deviation of Xi and 2*n points is rotated according to the 

sensitivity vector of the limit state function, respectively (see Fig. 1). Next, the original limit state function 

is evaluated at the 4*n+1 selected points. A set of linear equations is then formed by using the 4*n+1 values 

of function X)(~g  at the selected points.  

2.5  Numerical procedure of the proposed method  

An iterative procedure is coupled with the response surface in order to achieve a satisfactory 

approximation of the limit state function (LSF) in the neighbourhood of the design point. This point is 

determined according to the FORM, evaluating a new response surface and using it at each iteration to 

predict the new solution. 
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The iterative procedure is the following: 

Step 1. Select random variables X and define 

the state function g(X) according to the 

engineering problem 

Step 2. Approximate the limit state function 

with a first order response surface 

Step 3. Compute the gradient )(~ ugU of the 

response surface 

Step 4. Compute the sensitivity vector α 

Step 5. Generate 4*n+1 experimental points 

Step 6. Approximate the limit state function 

with a second order response surface 

Step 7. Compute the reliability index β 

Step 8. Check the convergence 

Step 9. Estimate the probability of failure by 

the importance sampling technique. 
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Figure 3. Flowchart of the proposed method 

3. Numerical models 

3.1 A hypothetical nonlinear limit state 

The hypothetical nonlear limit state function is defined as 

200]0.53.0exp[]2.6)2(4.0exp[)( 21  XXg X                                  (17) 

where X1 and X2 are assumed to be independent and have a standard normal distribution with zero mean 

and unit standard deviation. The reliability analysis performed by using Directional MCS with 106 samples 

yields 3.623×10-3, and the corresponding reliability index β = 2.685 [12], which are regarded as the exact 

referenced solution.  

The estimates of the reliability estimates strongly depend on the choice of the parameter f in the case of 

the conventional RSM and the proposed method. The results and relative error of the three methods are 

shown in Table 1 by MCS, the proposed method and traditional RSM. It can be seen that the analysis results 

of the proposed method are all very close to the exact ones. Propossed method can obtain more accurate Pf 

results than traditional RSM. 

Comparison is made between the proposed method and the conventional sequential RSM in terms of 

accuracy and efficiency as shown in Table 1. It can be found that the conventional RSM shows a 7.121%, 

7.204%, 7.508%, 8.198% deviation for the probability of failure and 0.931%, 0.894%, 0.968%, 1.08%  error 

for the reliability index, whereas the proposed method exhibits only 0.028%, 0.11 %, 0.083%, 0.00% 

and ).00%, 0.037%, 0.037%, 0.00% respectively, which indicates that the present method is more efficient.   

Table 1: Results of the reliability analysis of a hypothetical nonlinear limit state 

Method 
Failure 

probability Pf 

Relative 

error Pf 

Reliability 

index 

Relative 

error β 

MCS 3.623×10-3  2.685 — 
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Figure 4: Convergence histories of reliability 

index for a hypothetical nonlinear limit state 

Figure 5: Convergence histories of variable X(1) 

for a hypothetical nonlinear limit state 

 

 

 
Figure 6: Convergence histories of variable X(2) 

for a hypothetical nonlinear limit state 

Figure 7: Convergence histories of reliability 

index for a hypothetical nonlinear limit state 

 

Convergence histories for random variables X1, X2 and for reliability index β are presented in Fig. 4, 

Fig. 5, Fig. 6. Each of the two methods is run another 6 times, respectively, and the estimated reliability 

indexes are shown in Fig.4. Failure probability results obtained for problem are presented in Table 1. 

Convergence results presented in Fig. 4, Fig. 5, Fig. 6 compare the histories of the reliability index per 

iteration of each method. The histories are ploted until satisfaction of the convergence iteration. It can be 

seen that the random variables X1, X2 and reliability index β provided by the proposed method converges 

faster to the exact value than the traditional RSM. The difference in the first reliability index is due to the 

number of initial experimental points selected in each of these methods. Traditional RSM starts with 2n+1 

experimental points while the proposed method starts with 4n+1 experimental points. Table 1 and Fig. 4, 

Fig. 5, Fig. 6 compares the reliability index and failure probability resulting from both the traditional RSM 
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RSM (f=1) 3.365×10-3 7.121% 2.709 0.894% 

RSM (f=2) 3.362×10-3 7.204% 2.710 0.931% 

RSM (f=3) 3.351×10-3 7.508% 2.711 0.968% 

RSM (f=4) 3.326×10-3 8.198% 2.714 1.080% 

Proposed method (f=1) 3.622×10-3 0.028% 2.685 0.000% 

Proposed method (f=2) 3.619×10-3 0.110% 2.686 0.037% 

Proposed method (f=3) 3.620×10-3 0.083% 2.686 0.037% 

Proposed method (f=4) 3.623×10-3 0.000% 2.685 0.000% 



AN EFFICIENT RESPONSE SURFACE TECHNIQUE FOR SENSITIVITY… 

76 

 

and the proposed method with the different parameters f. The reliability index and failure probability are 

also presented to examine the accuracy of the structural reliability analysis results. 

3.2 Cantilever beam 

This section concerns the deflection limit state of a cantilever beam with rectangular cross section, 

subject to a uniformly distributed load [13]. The limit state function is written in terms of the maximum 

vertical deflection of the free end of the beam and a limit value equal to l/325, is defined by  

3258

4 l

EI

wbl
g                                                                         (18 ) 

where w, b, l, E and I are respectively w is the load per unit area, b is the width of the cross section, l is the 

length of the beam, E is the elastic modulus and I is the moment of inertia of the cross section. The random 

variables are the load w per unit area and the depth of the cross section are represented respectively by the 

random variables X1~N(1000,200) and X2 ~N(250,37.5). The modulus of elasticity E and the length l are 

assumed, respectively, equal to 2 ×104MPa and 6m,  the limit state function reduces to  

3

2

123.7476946154.18)(
X

X
g X                                                    (19) 

where X1 is the load in MPa and X2 is the depth im mm.  The load is assumed to be normal distributed, with 

a mean μ1=1000N/m2 and a standard deviation D1=200. The depth is also normally distributed, with 

μ2=250mm and D2=37.5. 

The exact solution using importance sampling with 106 simulations is 9.533×10-3. The estimates of the 

reliability estimates strongly depend on the choice of the parameter f in the case of the conventional RSM 

and the proposed method. The results and relative error of the three methods are shown in Table 2 by MCS, 

the proposed method and traditional RSM. It can be seen that the analysis results of the proposed method 

are all very close to the exact ones. Propossed method can obtain more accurate Pf results than traditional 

RSM. 

Comparison is made between the proposed method and the conventional sequential RSM in terms of 

accuracy and efficiency as shown in Table 2. It can be found that the conventional RSM shows a 2.349%, 

3.546%, 2.602%, 2.895% deviation for the probability of failure and 0.341%, 0.555%, 0.384%, 0.469%  

error for the reliability index, whereas the proposed method exhibits only 0.357%, 0.304%, 0.629%, 0.053% 

and 0.085%, 0.043%, 0.128%, 0.000% respectively, which indicates that the present method is more 

efficient.   

Table 2: Results of the reliability analysis of cantilever beam 

 

 

 

 

 

 

 

 

Method 
Failure 

probability Pf 

Relative 

error Pf 

Reliability 

index 

Relative 

error β 

MCS 9.533×10-3 — 2.344 — 

RSM (f=1) 9.757×10-3 2.349% 2.336 0.341% 

RSM (f=2) 9.871×10-3 3.546% 2.331 0.555% 

RSM (f=3) 9.781×10-3 2.602% 2.335 0.384% 

RSM (f=4) 9.257×10-3 2.895% 2.355 0.469% 

Proposed method (f=1) 9.499×10-3 0.357% 2.346 0.085% 

Proposed method (f=2) 9.504×10-3 0.304% 2.345 0.043% 

Proposed method (f=3) 9.473×10-3 0.629% 2.347 0.128% 

Proposed method (f=4) 9.538×10-3 0.053% 2.344 0.000% 



 Author: Chau Minh Quang 

 

77 

 

 

P
 A2

A1 A1

4m

4
m

 

Figure 8: Convergence histories of failure 

probability for cantilever beam 

Figure 9: Linear portal frame 

Convergence histories for failure probability Pf and for reliability index β are presented in Fig. 7, Fig. 

8. Each of the two methods is run another 8 times, respectively, and the estimated reliability indexes are 

shown in Fig.6. Failure probability results obtained for problem are presented in Table 2. Convergence 

results presented in Fig. 7, Fig. 8 compare the histories of the reliability index per iteration of each method. 

The histories are ploted until satisfaction of the convergence iteration. It can be seen that the failure 

probability Pf and reliability index β provided by the proposed method converges faster to the exact value 

than the traditional RSM. The difference in the first reliability index is due to the number of initial 

experimental points selected in each of these methods. Traditional RSM starts with 2n+1 experimental 

points while the proposed method starts with 4n+1 experimental points. Table 2 and Fig. 7, Fig. 8 compares 

the reliability index and failure probability resulting from both the traditional RSM and the proposed 

method with the different parameters f. The reliability index and failure probability are also presented to 

examine the accuracy of the structural reliability analysis results. 

3.3 Linear portal frame 

This engineering application is a linear frame structure one story and one bay as shown in Fig.9. 

Different cross sectional areas Ai and horizontal load P are treated as independent random variables, their 

statistics are listed in Table 3. The sectional moments of inertia expressed as 
2

    1 2( 0.0833,  0.16670)i i iI A     . The Young’s modulus is treated as deterministic 

6 22 10 /E kN m  . 

The limit state function is expressed  

xug  01.0)(X                                                              (20) 

where ux denotes the max horizontal displacement as the function of basic random variables. The limit state 

function is implicit, and the structural response has to be calculated by using the FEM. The reliability index 

and failure probability calculated by the proposed method is compared with the MCS result with the exact 

solution 20.2322 10fP    and its corresponding reliability index 2.834  [14]. The results and 

relative error of the three methods are shown in Table 5.4 by MCS, the proposed method and traditional 

RSM. It can be seen that the analysis results of the proposed method are all very close to the exact ones. 

Propossed method can obtain more accurate Pf results than traditional RSM. 

Comparison is made between the proposed method and the conventional sequential RSM in terms of 

accuracy and efficiency as shown in Table 1. It can be found that the conventional RSM shows a 7.121%, 

7.204%, 7.508%, 8.198% deviation for the probability of failure and 0.931%, 0.894%, 0.968%, 1.08%  error 

for the reliability index, whereas the proposed method exhibits only 0.028%, 0.11 %, 0.083%, 0.00% 

and ).00%, 0.037%, 0.037%, 0.00% respectively, which indicates that the present method is more efficient.  

  

1 2 3 4 5 6 7 8
0

0.005

0.01

0.015

0.02

0.025

Iterations

F
a
il

u
re

 P
ro

b
a
b

il
it

y
 P

f

 

 

Propossed method (f=1)

Propossed method (f=2)

Propossed method (f=3)

Traditional RSM (f=1)

Traditional RSM (f=2)

Traditional RSM (f=3)



AN EFFICIENT RESPONSE SURFACE TECHNIQUE FOR SENSITIVITY… 

78 

 

 

 
Figure 10: Convergence histories of variable 

A(1) for linear portal frame 

Figure 11: Convergence histories of variable A(2) 

for linear portal frame 

 

Table 3: Random properties of linear portal frame 

Variable Mean Standard deviation Unit Distribution 

A1 0.360 0.036 m2 lognormal 

A2 0.180 0.018 m2 lognormal 

P 20.000 5.000 kN Type I largest 

 

Table 4: Results of the reliability analysis for linear portal frame 
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Method Failure 

probability Pf 

Relative 

error Pf 

Reliability 

index 

Relative 

error β 

MCS 2.409×10-3 — 2.819 — 

RSM (f=1) 0.614×10-3 74.512% 3.233 14.686% 

RSM (f=1.5) 0.610×10-3 74.678% 3.234 14.723% 

RSM (f=2) 0.599×10-3 75.135% 3.239 14.899% 

RSM (f=2.5) 0.575×10-3 76.131% 3.251 15.325% 

Proposed method (f=1) 2.373×10-3 1.494% 2.824 0.177% 

Proposed method (f=1.5) 2.360×10-3 2.034% 2.826 0.248% 

Proposed method (f=2) 2.361×10-3 1.993% 2.826 0.248% 

Proposed method (f=2.5) 2.349×10-3 2.491% 2.827 0.284% 
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Figure 12: Convergence histories of variable P for 

linear portal frame 

Figure 13: Convergence histories of reliability 

index for linear portal frame 

Convergence histories for random variables A1, A2 and P and for reliability index β are presented in Fig. 

10, Fig. 11, Fig. 12 and Fig. 13. Each of the two methods is run another 11 times, respectively, and the 

estimated reliability indexes are shown in Fig.13. Failure probability results obtained for problem are 

presented in Table 4. Convergence results presented in Fig. 10, Fig. 11, Fig. 12 and Fig. 13 compare the 

histories of the reliability index per iteration of each method. The histories are ploted until satisfaction of 

the convergence iteration. It can be seen that the random variables A1, A2, P and reliability index β provided 

by the proposed method converges faster to the exact value than the traditional RSM. The difference in the 

first reliability index is due to the number of initial experimental points selected in each of these methods. 

Traditional RSM starts with 2n+1 experimental points while the proposed method starts with 4n+1 

experimental points. Table 4 and Fig. 10, Fig. 11, Fig. 12 and Fig. 13 compares the reliability index and 

MPP resulting from both the traditional RSM and the proposed method with the different parameters f. The 

reliability index and MPP are also presented to examine the accuracy of the structural reliability analysis 

results. 

4. CONCLUSION 

An efficient response surface technique is proposed for sensitivity estimation of parameters in structural 

reliability analysis. At each iteration, the response surface is built after locating 4n+1 sampling points 

includes 2n+1 sampling points are chosen along the coordinate axes of the U-space of standard normal 

random variables, as in the classic RSM and 2n sampling points is rotated according to the sensitivity vector 

of the limit state function. An adaptive procedure in combination with the FORM method is adopted to 

build successive response surfaces until the convergence. Then, the probability of failure can be computed 

applying the importance sampling Monte Carlo technique. A better approximation of a limit state function 

with a reasonable computational effort is the objective of the proposed method. The numerical models 

showed that the proposed method is able to reach a better approximation in the evaluation of probability of 

failure than the traditional RSM.  
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Tóm tắt. Phương pháp RSM là một phương pháp có độ tin cậy về kết cấu mạnh mẽ sử dụng các giá trị 

của hàm tại các điểm cụ thể gần đúng với hàm trạng thái giới hạn bằng biểu thức đa thức. Hàm phân tích 

thay thế hàm trạng thái giới hạn chính xác mà thời gian tính toán cần thiết để đánh giá độ tin cậy của hệ kết 

cấu có thể giảm đáng kể. Tuy nhiên, vị trí của các điểm mẫu đã được một số tác giả nghiên cứu và hiệu quả 

của phương pháp bề mặt đáp ứng vẫn đang được thảo luận. Vì vậy, nghiên cứu này đề xuất một phương 

pháp bề mặt đáp ứng mới để tính độ nhạy của các tham số trong phân tích độ tin cậy kết cấu. Đa thức thứ 

nhất không có số hạng chéo được sử dụng để tính gần đúng hàm trạng thái giới hạn và có thể thu được 

vectơ độ nhạy của hàm trạng thái giới hạn. Thiết kế thực nghiệm với 4n+1 điểm lấy mẫu bao gồm 2n+1 

điểm lấy mẫu được chọn dọc theo các trục tọa độ trong không gian U của các biến ngẫu nhiên chuẩn, như 

trong mô hình RSM cổ điển và 2n điểm lấy mẫu được quay theo vectơ độ nhạy của hàm trạng thái giới hạn 

được xây dựng. Một đa thức bậc hai được sử dụng để tính gần đúng hàm trạng thái giới hạn và có thể thu 

được điểm có xác suất lớn nhất (MPP) bằng cách tiến hành thuật toán HL-RF dựa trên RS đã tạo. Để cải 

thiện hơn nữa độ chính xác của phân tích độ tin cậy, Mô phỏng Monte Carlo (MCS) được tiến hành trên đa 

thức đã thiết lập để tính xác suất thất bại. Các mô hình số được xét để chứng minh những ưu điểm của 

phương pháp được đề xuất. 

Keywords: phân tích độ tin cậy, phương pháp bề mặt đáp ứng, phương pháp độ tin cậy bậc nhất, phương 

pháp phần tử hữu hạn, hàm phản hồi ngầm. 
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