NGHIÊN CỨU ĐỘNG HỌC CỦA PHẢN ỨNG CO₂ REFORMING CH₄ SỬ DỤNG XÚC TÁC COBALT MANG TRÊN Al₂O₃ VỚI CHẤT XÚC TIẾN La₂O₃

TRẦN NGỌC THẮNG^{*}, BẠCH THỊ Mỹ HIỀN Khoa Công nghệ Hóa học, Trường Đại học Công nghiệp thành phố Hồ Chí Minh ^{*}Tác giả liên hệ: tranngocthang@iuh.edu.vn DOIs: https://doi.org/10.46242/jstiuh.v65i05.4953

Tóm tắt. Phản ứng CO₂ reforming gần đây nổi lên như một phương pháp tiềm năng sản xuất khí tổng hợp từ khí tự nhiên giàu CO₂. Trong khi đó, xúc tác Cobalt với chất xúc tiến đang được nhận được nhiều sự quan tâm bởi chúng không chỉ có hoạt tính xúc tác tốt cho phản ứng CO₂ reforming mà còn phù hợp cho các ứng dụng quy mô lớn. Nghiên cứu này đánh giá hoạt động của 5%La10%Co/Al₂O₃ trong phản ứng CO₂ reforming ở các nhiệt độ phản ứng khác nhau trong điều kiện áp suất riêng phần tác chất lần lượt thay đổi. Sự hiện diện quá mức của CH₄ trong nguyên liệu tạo điều kiện thuận lợi cho quá trình phân hủy CH₄ trên xúc tác dẫn đến tắc nghẽn các tâm hoạt động. Sự gia tăng của P_{CH_4} làm tăng khả năng hấp thụ CH₄ trên bề mặt chất xúc tác, do đó làm tăng lượng CO₂ chuyển hóa thông qua phản ứng. Sự tăng P_{CO_2} thúc đẩy phản ứng khí hóa cặn cacbon từ quá trình phân hủy CH₄. Tốc độ chuyển hóa của CH₄ chịu ảnh hưởng nhiều bởi sự tăng nhiệt độ so với CO₂. Phản ứng CO₂ reforming trên xúc tác 5%La10%Co/Al₂O₃ đã được chứng minh là xảy ra theo cơ chế hấp phụ đồng thời của CH₄ và CO₂ trên các vị trí hoạt động kép hoặc các tâm hoạt động khác nhau và chất xúc tác thể hiện sự ổn định tốt trong suốt 48 giờ phản ứng ở 1023 K. **Từ khóa.** Khí tổng hợp, CO₂ reforming, động học, xúc tác cobalt, nhôm oxit.

1. TÔNG QUAN

Khí hydro (H₂), một trong hai thành phần chính của khí tổng hợp, được xem như là nguồn nhiên liệu tiềm năng nhờ vào khả năng tái tạo và nhiệt năng lớn (120,7kJ/g) [1, 2]. Khí H₂ cũng được ứng dụng trong pin năng lượng để tạo ra điện và sử dụng làm nguyên liệu trong ngành công nghiệp thực phẩm và y dược [3-5]. Việc mở rộng phạm vi ứng dụng của H₂ trong công nghiệp lọc hóa dầu như xử lý hydro, hydro-cracking... khiến nhu cầu nguồn cung của nguyên liệu này tăng lên [6].

Trong những năm gần đây, CO₂ reforming nổi lên như là một phương pháp phù hợp để sản xuất khí tổng hợp thay thể cho phương pháp truyền thống là H₂O reforming vốn yêu cầu cao về độ tinh khiết của khí nguyên liệu. CO₂ reforming sử dụng nguyên liệu là CO₂ và hydrocarbon mạch ngắn, phổ biến là CH₄, được mô tả như trong phương trình (1).

 $CO_2 + CH_4 \rightarrow 2H_2 + 2CO$

Quá trình khai thác thăm dò dầu khí hiện nay phát hiện ra nhiều mỏ khí có thành phần CO_2 lớn tại khu vực châu Á như Malaysia, Thái Lan, và Việt Nam... và CO_2 , CH_4 cùng tồn tại trong hầu hết các mỏ khí thiên nhiên, do đó việc áp dụng CO_2 reforming để sản xuất khí tổng hợp sẽ không cần công đoạn tách loại CO_2 như trong quá trình steam reforming [7]. Ngoài ra, sản phẩm của quá trình CO_2 reforming có tỉ lệ H_2/CO xấp xỉ bằng 1, phù hợp cho các quá trình tổng hợp, sản xuất tiếp theo như làm nguyên liệu cho phản ứng FTS hoặc tổng hợp methanol [7].

Cobalt (Co) trên chất mang Al_2O_3 đã chứng minh được hiệu quả và có những đặc điểm phù hợp cho ứng dụng làm xúc tác phản ứng CO_2 reforming trong công nghiệp như: hoạt tính cao, bền nhiệt, ít hình thành cốc. Đặc biệt, các tính chất này của xúc tác tăng lên đáng kể khi kết hợp với chất xúc tiến La_2O_3 [8].

Nghiên cứu động học trong phản ứng xúc tác là không thể thiếu để hiểu đầy đủ về cơ chế phản ứng và hoạt động của chất xúc tác trong phản ứng CO₂ reforming. Hơn nữa, có thể thấy rằng các tham số vận hành như nhiệt độ có thể ảnh hưởng đến hiệu suất xúc tác và cơ chế phản ứng, đặc biệt là trong việc xác định bước hạn chế tốc độ. Do đó, mục tiêu của nghiên cứu này là khảo sát ảnh hưởng của các thông số vận hành: nhiệt độ (923-1073 K) và áp suất riêng phần tác chất (10-40 kPa) lên hiệu suất xúc tác, cũng như nghiên cứu động học và cơ chế của phản ứng CO₂ reforming trên xúc tác 5%La10%Co/Al₂O₃.

(1)

2. PHƯƠNG PHÁP NGHIÊN CỨU

2.1 Tổng hợp chất xúc tác

Chất mang nhôm oxit (Al₂O₃) được tổng hợp bằng phương pháp thủy nhiệt, cụ thể, 1,96 g Pluronic® P-123 (Sigma-Aldrich, St. Louis, Missouri, Mỹ) được hòa tan trong 29,5 ml hỗn hợp dung môi etanol (VWR Chemicals, Heverlee, Belgium) -nước (tỉ lệ 25% nước và 75% etanol theo thể tích). Quá trình khuấy được thực hiện ở nhiệt độ phòng trong 30 phút trước khi thêm 7,36 g tiền chất Al(NO₃)₃.9H₂O và 3,14 ml dung dịch HCl (37%) (Merck Millipore). Hỗn hợp sau đó được tiếp tục khuấy trong 1 giờ và trải qua quá trình thủy nhiệt ở 373 K trong 24 giờ trong thiết bị cao áp. Sau quá trình thủy nhiệt, hỗn hợp chuyển sang dạng gel và được sấy 48 giờ ở 333 K. Sau đó, mẫu được gia nhiệt với tốc độ 1 K/phút từ nhiệt độ phòng đến 1073K và thực hiện quá trình nung ở 1073 K trong 5 giờ trong lò nung Carbolite CWF 1200 (Sheffield, Anh). Nhôm oxit thu được ở dạng bột trắng và được nghiền tạo kích thước 125-160 µm dùng cho quá trình tổng hợp tiếp theo. Chất xúc tác với thành phần 5%La, 10%Co trên chất mang Al₂O₃, ký hiệu là 5%La-10%Co/Al₂O₃, được tổng hợp bằng phương pháp đồng tẩm, trong đó, muối Co(NO₃)₂.6H₂O và La(NO₃)₃.6H₂O được hòa tan với lượng etanol tối thiểu và tẩm lên chất mang Al₂O₃. Hỗn hợp được tiếp tục đảo trộn trong 1 giờ sau đó được đem đi sấy qua đêm ở 373 K. Quá trình nung ở 873 K trong 5 giờ được tiến hành sau khi mẫu được gia nhiệt với tốc độ 1 K/phút từ nhiệt độ phòng đến 873 K.

2.2 Phân tích đặc tính chất xúc tác

Thiết bị hấp phu khí (Tristar II 3020, Micrometrics, USA), sử dụng nitơ hóa lỏng ở 77 K, được sử dụng để kiểm tra các đặc tính kết cấu của xúc tác. Trước thử nghiêm, mẫu thử được nung trong dòng N_2 ở 573 K trong 1 giờ để loại bỏ các tạp chất và hơi ẩm. Phân tích nhiễu xa tia X được thực hiện trên máy quang phổ Miniflex 600 (Rigaku, Tokyo, Nhật Bản) với nguồn bức xạ Cu ($\lambda = 1,5418$ Å). Tất cả các mẫu nhiễu xạ được ghi lại ở phạm vi quét 5-80° với bước quét là 0,02° và tốc độ quét 1°/phút. Cơ sở dữ liệu tiêu chuẩn (JCPDS) được sử dụng tham khảo để xác định peak. Kết quả phân tích CO₂-TPD được thực hiện trên thiết bị AutoChem II-2920. Ban đầu, mẫu được khử bằng dòng H₂ (10%H₂/Ar với lưu lượng 60 ml/phút) ở 1073 K trong 1 giờ, sau đó được làm nguôi bằng N_2 đến nhiệt đô 423 K. Quá trình hấp phụ CO₂ được thực hiện ở nhiệt đô này với dòng 60 ml/phút 10%CO₂/Ar trong 2 giờ. Lượng CO₂ dự được thổi sach bởi N₂ trong 30 phút trước khi quá trình giải hấp diễn ra. Lương CO₂ hấp phu được đo liên tục khi nhiệt đô tăng đến 1073 K và lượng CO₂ thoát ra theo thời gian được phân tích bằng đầu dò TCD. Quá trình khử theo chương trình nhiệt H₂ (H₂-TPR) được thực hiện trên thiết bị AutoChem II-2920 (Micromeritics, Georgia, US). Đối với mỗi lần chạy, khoảng 50 mg chất xúc tác đặt ở tâm của một ống chữ U bằng thạch anh và được thổi N_2 ở 373 K và 30 phút, tiếp theo là bước khử trong dòng 10%H₂/N₂ (50 ml/phút) với nhiệt độ được lập trình từ 373 K đến 1173 K tốc đô 10 K/phút. Mẫu khử được giữ không đổi ở 1173 K trong 30 phút trước khi ha nhiệt xuống nhiệt đô môi trường trong N₂.

2.3 Đánh giá hoạt tính xúc tác

Hoạt tính của xúc tác được đánh giá ở khoảng nhiệt độ 923 - 1073 K. Ảnh hưởng của áp suất riêng phần tác chất đến hiệu quả phản ứng cũng được khảo sát. Hệ thống thực hiện phản ứng bao gồm lò phản ứng cố định hình ống có chiều dài 17 in và đường kính ngoài 3/8 in. Với mỗi thí nghiệm, khoảng 0,1 g chất xúc tác được cố định ở giữa ống bằng sợi thạch anh. Quá trình khử hoạt hóa xúc tác được thực hiện bằng dòng khí 50% H₂/N₂, nhiệt độ 1023 K trong 1 giờ và phản ứng được thực hiện với vận tốc không gian cố định (GHSV) là 36 L/(g_{cat}.giờ). Các thành phần trong dòng sản phẩm khí được phân tích bằng máy sắc ký khí với đầu dò dẫn nhiệt (TCD). Hiệu suất và độ chuyển hóa được tính toán theo các công thức sau: Độ chuyển hóa

$$X_{i}(\%) = \frac{F_{i}^{in} - F_{i}^{out}}{F_{i}^{in}} \times 100\%$$
⁽²⁾

Hiệu suất CO, H₂

$$Y_{CO}(\%) = \frac{F_{CO}^{out}}{\left(F_{CH_4}^{in} + F_{CO_2}^{in}\right)} \times 100\%$$
(3)

$$Y_{H_2}(\%) = \frac{F_{H_2}^{out}}{2 \times F_{CH_4}^{in}} \times 100\%$$
(4)

Tốc độ tạo thành H₂, CO

Tác giả: Trần Ngọc Thắng và Cộng sự

$$r_{H_2}(mol. g^{-1}. s^{-1}) = \frac{F_{H_2}^{out}}{W_{Cat}}$$
(5)
$$r_{L_2}(mol. g^{-1}. s^{-1}) = \frac{F_{CO}^{out}}{F_{CO}^{out}}$$
(6)

$$T_{CO}(mot, g : S) = \frac{1}{W_{Cat}}$$
(6)

Trong đó, X_i : độ chuyển hóa của i, F_i : tốc độ dòng của i, Y_i : hiệu suất của I, W_{cat} : khối lượng xúc tác.

2.4 Nghiên cứu động học của phản ứng

 D^{e} xác định phương trình tốc độ chuyển hóa cũng như tốc độ tạo thành sản phẩm của phản ứng CO_2 reforming, các số liệu thực nghiệm được áp vào mô hình định luật lũy thừa và định luật Arrhenius.

$$r = k \left(P_{CH_4}^m \times P_{CO_2}^n \right) \tag{7}$$

$$k = A \times exp\left(\frac{-E_a}{RT}\right) \tag{8}$$

Trong đó r là tốc độ phản ứng, A là hệ số, E_a là năng lượng hoạt hóa, P_i là áp suất riêng phần của chất i, R là hằng số khí lý tưởng, T là nhiệt độ, m và n là bậc phản ứng.

Các thông số động học như hằng số tốc độ (k), bậc phản ứng (m và n) được tính toán bằng phần mềm Polymath 6.0 sử dụng kỹ thuật hồi quy phi tuyến Levenberg–Marquardt (L-M) bình phương cực tiểu. Mô hình Langmuir-Hinshelwood (LH) được áp dụng để phân tích chi tiết hơn cơ chế phản ứng và xác định các thông số động học như hằng số tốc độ phản ứng chung (k_{rxn}) , hằng số hấp phụ tác chất $(k_{CH_4} \text{ và } k_{CO_2})$. Ngoài ra, các điều kiện Boudart-Mears-Vannice (BMV) cũng được khảo sát.

$$lnK_{i} = -\frac{\Delta H_{ads}^{i}}{RT} + \frac{\Delta S_{ads}^{i}}{R}$$
(9)
$$10 \le -\Delta S_{exp} \le 12,2 + 0,0014 \times \Delta H_{exp}$$
(10)

Trong đó K_i là hằng số hấp phụ ($i = CH_4$ hoặc CO_2), ΔS_{exp} là biến thiên entropy (J/mol.K), ΔH_{exp} là biến thiên enthanpy (J/mol).

Các phân tích động học phản ứng reforming trên chất xúc tác dựa trên mô hình Langmuir-Hinshelwood (LH) với biểu thức tốc độ đề xuất được tóm tắt trong Bảng 1.

STT	Phương trình tốc độ	Mô tả	Tài liệu
LH-1	$\frac{k_{rxn}P_{CH_4}P_{CO_2}}{\left(1+K-P_1+K-P_2\right)^2}$	Hấp phụ phân tử CH4 và CO2 trên 1 tâm hoạt động	[9]
	$\left(\mathbf{I} + \mathbf{K}_{CH_4}\mathbf{I}_{CH_4} + \mathbf{K}_{CO_2}\mathbf{I}_{CO_2}\right)$,	
LH-2	$\frac{k_{_{TXN}}P_{_{CH_4}}P_{_{CO_2}}}{\left(1+K_{_{CH_4}}P_{_{CH_4}}\right)\left(1+K_{_{CO_2}}P_{_{CO_2}}\right)}$	Hập phụ phân tử cả CH4 và CO ₂ ở 2 tâm hoạt đông khác nhau	[10]
LH-3	$\frac{k_{rxn}P_{CH_4}\sqrt{P_{CO_2}}}{\left(1+K_{CH_4}P_{CH_4}+\sqrt{K_{CO_2}P_{CO_2}}\right)^2}$	Hấp phụ phân tử CH4 và hấp phụ phân ly CO2 trên 1 tâm hoạt động	[11]
LH-4	$\frac{k_{rxn}\sqrt{P_{CH_4}}P_{CO_2}}{\left(1+\sqrt{K_{CH_4}}P_{CH_4}}\right)\left(1+K_{CO_2}P_{CO_2}\right)}$	Hấp phụ phân tử CH4 và hấp phụ phân ly CO2 trên 2 tâm hoạt động khác nhau	[11]
LH-5	$\frac{k_{rxn}\sqrt{P_{CH_4}P_{CO_2}}}{\left(1+\sqrt{K_{CH_4}P_{CH_4}}+\sqrt{K_{CO_2}P_{CO_2}}\right)^2}$	Hấp phụ phân ly CH4 và CO2 trên 1 tâm hoạt động	[12]

Bảng 1. Các biểu thức tốc độ theo cơ chế LH được đề xuất cho phản ứng reforming

LH-6	$k_{rxn}\sqrt{P_{CH_4}P_{CO_2}}$	Hấp phụ phân tử CH4 và hấp phụ phân ly CO2 trên 2 tâm	[13]	
	$\overline{\left(1+\sqrt{K_{CH_4}P_{CH_4}}\right)\left(1+\sqrt{K_{CO_2}P_{CO_2}}\right)}$	hoạt động khác nhau		

3. KẾT QUẢ VÀ BÀN LUẬN

3.1 Phân tích xúc tác

Tính chất hóa lý của xúc tác 5%La-10%Co/Al₂O₃ được phân tích và thể hiện tóm tắt thông qua hình 1. Đường hấp phụ/giải hấp thuộc dạng IV theo phân loại của IUPAC và xuất hiện vòng trễ H1 (hình 1a) chứng tỏ xúc tác có cấu trúc xốp trung bình với các lỗ rỗng hình trụ đồng nhất. Kích thước lỗ xốp phân bố trong khoảng 3 – 9 nm. Phổ nhiễu xạ tia X (hình 1b) cho thấy sự tồn tại của chất mang Al₂O₃ dạng gamma thể hiện các peak ở đỉnh 2*θ* là 37,4°, 39,6°, 46,0°, 67,0° và 77,1° (JCPDS số 04-0858) [8]. Cobalt tồn tại trong xúc tác ở 2 dạng: pha Co₃O₄ với các peak 2*θ* ở 31,3°, 37,0°, 44,9° và 55,8° (JCPDS số 74-2120) [14] trong khi pha CoAl₂O₄ có các peak 2*θ* ở 59,6° và 65,4° (JCPDS số 82-2246) [15]. Sự hiện diện của tinh thể La₂O₃ cũng được chứng minh qua peak 2*θ* ở 29,9° (JCPDS số 83-1355) [16].

Hình 1. Kết quả phân tích xúc tác 5%La-10%Co/Al₂O₃ (a) phổ hấp phụ giải hấp N₂, (b) phổ XRD, (c) phổ CO₂-TPD, (d) phổ H₂-TPR

Tính chất bazơ của xúc tác cũng được làm sáng tỏ thông qua phân tích CO₂-TPD, cụ thể trên hình 1c có sự xuất hiện một đỉnh rộng cho thấy sự tồn tại của các tâm bazo trên bề mặt vật liệu trong khoảng nhiệt độ từ 450 đến 950 K. Phổ giải hấp CO₂ được phân tách thành 2 đỉnh với giá trị cực đại ở 510 K và 625 K thể hiện

hai loại tâm bazơ trung bình và mạnh tồn tại trên bề mặt xúc tác. Tính chất khử của xúc tác thể hiện qua phổ phân tích H₂-TPR (hình 1d). Trong đó, xuất hiện ba đỉnh riêng biệt. Hai đỉnh đầu tiên đặc trưng cho quá trình khử hai bước của Co₃O₄ thành kim loại Co⁰ thông qua sự hình thành pha trung gian CoO (Co₃O₄ \rightarrow CoO \rightarrow Co) [16]. Tín hiệu rộng và không đáng kể xuất hiện ở trên 1000 K được cho là do phản ứng khử CoAl₂O₄ thành kim loại Co⁰ [17]. Cường độ thấp của đỉnh này chứng tỏ hàm lượng tương đối nhỏ CoAl₂O₄ so với pha Co₃O₄ trong chất xúc tác.

3.2 Ånh hưởng của áp suất riêng phần CH4 và CO2

Sự phụ thuộc của độ chuyển hóa CH_4 và CO_2 vào áp suất riêng phần của tác chất trong phản ứng CO_2 reforming trên xúc tác 5%La-10%Co/Al₂O₃ được thể hiện trong hình 2. Với sự gia tăng áp suất riêng phần CH_4 từ 10 đến 40 kPa (hình 2a), ở bất kể nhiệt độ phản ứng độ chuyển hóa của CH_4 giảm 34,7%. Điều này có thể được giải thích là do sự hiện diện của nhiều phần từ CH_4 trong nguyên liệu làm gia tăng phản ứng phân hủy CH_4 tạo thành cặn cacbon và cản trở hoạt động của các tâm xúc tác. Trong khi đó, độ chuyển hóa của CO_2 tăng lên và đạt 94,6% (hình 2b). Kết quả trên phù hợp với giả thiết về xác suất va chạm của hai tác chất khi CH_4 bị hấp phụ nhiều hơn trên các tâm xúc tác kéo theo sự chuyển hóa nhiều hơn CO_2 thông qua phản ứng reforming. Lập luận này cũng tương tự như giải thích trong các nghiên cứu gần đây đối với phản ứng reforming CH_4 sử dụng xúc tác Cerium trên chất mang [18, 19]

Hình 2. Ảnh hưởng của áp suất riêng phần CH4 đến độ chuyển hóa của phản ứng CO₂ reforming trên xúc tác 5%La-10%Co/Al₂O₃ ở 923, 973, 1023 và 1073 K

Đáng chú ý là tốc độ chuyển hóa cả CH₄ và CO₂ đều tăng cùng với áp suất riêng phần CH₄ và nhiệt độ phản ứng, thể hiện ở hình 2c và hình 2d. Khi $P_{CH_4} < 20 \ kPa$, tốc độ chuyển hóa CO₂ cao hơn của CH₄ do ái lực mạnh của CO₂ với tâm bazo trên xúc tác khi tỉ lệ tác chất thấp. Trong khi đó khi $P_{CH_4} > 20 \ kPa$, phản ứng phân hủy CH₄ diễn ra mạnh mẽ khiến tốc độ chuyển hóa của CH₄ lớn hơn so với CO₂ [20, 21].

Mặt khác, khi giữ nguyên áp suất riêng phần của CH_4 ở 20 kPa và tăng áp suất riêng phần của CO_2 từ 10 kPa đến 40 kPa, độ chuyển hóa của CH_4 tăng và đạt 94,8% (hình 3a). Hiện tượng có liên quan đến sự tăng lên của phản ứng oxy hóa cặn cacbon tạo thành từ quá trình phân hủy CH_4 [22].

$$CH_4 \xrightarrow[]{-H_2} C_x H_{1-x} \xrightarrow[]{+CO_2} H_2 + CO \tag{11}$$

)

Trong đó $C_x H_{1-x}$ là cặn cacbon với $x \le 1$.

Trong nghiên cứu của Donazzi và các cộng sự cũng chỉ ra rằng độ chuyển hóa CH₄ tăng lên khi tăng P_{CO_2} do sự xuất hiện của phản ứng reforming với hơi nước hình thành từ phản ứng RWGS (phương trình 12) trong môi trường giàu phân tử CO₂ [23].

Hình 3. Ảnh hưởng của áp suất riêng phần CO₂ đến độ chuyển hóa trong phản ứng CO₂ reforming trên xúc tác 5%La-10%Co/Al₂O₃ ở các nhiệt độ 923, 973, 1023 và 1073 K.

Tuy nhiên, độ chuyển hóa của CO₂ giảm khi tăng áp suất riêng phần P_{CO_2} trong nguyên liệu từ 10 đến 40 kPa (hình 3b). Kết quả này là do sự thiếu hụt phân tử CH₄ trong nguyên liệu làm tác chất cho phản ứng CO₂ reforming. Bên cạnh đó Omoregbe và các cộng sự cũng giải thích rằng khi tăng mật độ CO₂ trong nguyên liệu, các tâm hoạt động của xúc tác dễ dàng bị oxy hóa dẫn đến giảm khả năng hấp phụ CO₂ [24]. $3Co + 4CO_2 \rightarrow Co_3O_4 + 4CO$ (13)

Tốc độ chuyển hóa của CO_2 bị ảnh hưởng nhiều hơn khi tăng áp suất riêng phần CO_2 so với tốc độ chuyển hóa của CH_4 (hình 3c và hình 3d). Kết quả này là do CO_2 hấp phụ mạnh hơn trên xúc tác 5%La10%Co/Al₂O₃ so với CH_4 . Điều này xảy ra tương tự cho phản ứng trên xúc tác Ni/La₂O₃. Thực tế thành phần La₂O₃ trong xúc tác giúp lưu giữ CO_2 tốt hơn trên xúc tác [20].

3.3 Nghiên cứu cơ chế của phản ứng reforming trên xúc tác 5%La-10%Co/Al₂O₃

3.3.1 Mô hình động học theo định luật lũy thừa

Để xác định tốc độ chuyển hóa CH_4 và CO_2 trong phản ứng CO_2 reforming trên chất xúc tác 5%La-10%Co/Al₂O₃, dữ liệu tốc độ thực nghiệm thu được được áp vào mô hình định luật lũy thừa như được trình bày trong công thức 7. Phần mềm Polymath phiên bản 6.0 được sử dụng để xác định các thông số động học thông qua thuật toán Levenberg-Marquardt. Các thông số tính toán được tóm tắt trong Bảng 2.

Xúc tác	Cấu tử	m	n	A (mmol min ⁻¹ kPa ^{-(m+n)})	E _a (kj mol ⁻¹)	R ²
5%La-10%Co/Al2O3	CH4	0.73	0.19	1.77	18.93	0.98
	CO ₂	0.13	0.72	2.11	15.53	0.97
5%Ni/MgAl ₂ O ₄ ^(*)	CH ₄			26.39	-	
	CO ₂	-	-	-	40.43	-
Rh-Ni/CeO ₂ -Al ₂ O ₃ ^(**)	CH4	-	-	-	37.00	-

Bảng 2. Các tham số động học từ mô hình định luật lũy thừa

^(*) Dữ liệu thu được từ Tham chiếu Gou [25]

(**) Dữ liệu thu được từ Tham chiếu Ocsachoque [26]

Năng lượng hoạt hóa biểu kiến với CO₂ là khoảng 15,53 kJ/mol trong khi với CH₄ là 18,93 kJ/mol. Điều này cho thấy tốc độ chuyển hóa của CH₄ nhạy với sự thay đổi nhiệt độ phản ứng hơn so với CO₂. Ngoài ra, năng lượng hoạt hóa trong nghiên cứu này thấp hơn so với năng lượng hoạt hóa của phản ứng CO₂ reforming trên xúc tác 5%Ni/MgAl₂O₄ và Rh-Ni/CeO₂-Al₂O₃. Sự vượt trội của xúc tác này có thể là do kết hợp hiệu ứng của việc giam giữ các hạt cobalt trong cấu trúc xốp của chất mang và thuộc tính xúc tiến của La₂O₃. Ở bảng 2, giá trị R² thu được của công trình này đều lớn hơn 0,97 cho thấy rằng các số liệu thực nghiệm phù hợp tốt với mô hình định luật lũy thừa. Bậc phản ứng đối với CH₄ (m) và CO₂ (n) lần lượt là 0,73 và 0,19 và chỉ ra rằng tốc độ chuyển hóa CH₄ phụ thuộc nhiều hơn vào áp suất riêng phần của CH₄ so với CO₂. Ngược lại, độ chuyển hóa CO₂ phụ thuộc mạnh vào áp suất riêng phần của CO₂. Biểu đồ chẵn lẻ của mô hình định luật lũy thừa giữa giá trị vận tốc phản ứng theo mô hình định luật lũy thừa giữa giá trị vận tốc phản ứng theo mô hình định luật lũy thừa giữa giá trị vận tốc phản ứng theo mô hình định luật lũy thừa giữa giá trị vận tốc phản ứng theo mô hình định luật lũy thừa ($-r_{power law}$) và vận tốc phản ứng thực nghiệm phù hợp với mô hình định luật lũy thừa.

Hình 4. Biểu đồ chẵn lẻ cho tốc độ phản ứng theo mô hình định luật lũy thừa

3.3.2 Mô hình Langmuir-Hinshelwood

Các tham số động học bao gồm hằng số tốc độ tổng quát, hằng số tốc độ hấp phụ CH₄ và CO₂ được tính toán dựa trên số liệu thực nghiệm bằng phần mềm Polymath 6.0 theo các mô hình đề xuất trong bảng 1. Số liệu tính toán được trình bày trong bảng 3. Trong các mô hình áp dụng, chỉ có mô hình LH-2 và LH-5 là có giá trị $R^2 > 0.9$, các mô hình còn lại có hệ số R^2 không được chấp nhận. Do đó, các mô hình LH-1, LH-3, LH-4 và LH-6 không phù hợp để minh họa cơ chế phản ứng trên chất xúc tác 5%La10%Co/Al₂O₃.

Ngoài ra, mô hình LH-2 và LH-5 cho thấy xu hướng hằng số tốc độ tổng thể tăng cùng với sự gia tăng nhiệt độ từ 923 K đến 1073 K, điều này phù hợp với tiêu chí Arrhenius. Do đó, các mô hình này sẽ được khảo sát thêm bằng cách sử dụng tiêu chí Boudart-Mears-Vannice (BMV).

Mô	Nhiệt độ.	K _{rxn}	K _{cu}	K _{co}	R ²	R _{msd}
hình	(K)	(mmol min ⁻¹ kPa ^{-(m+n)})	CH ₄			
LH-1	923	$9.75 imes 10^1$	-3.374	-2.78×10^{0}	0.78	0.150
	973	5.10×10^{-2}	0.021	0.47×10 ⁻¹	0.98	0.072
	1023	10.20×10^{1}	-1.430	-3.14×10^{0}	0.71	0.412
	1073	10.20×10^{1}	-1.248	-3.23×10^{0}	0.72	0.435
LH-2	923	7.40×10^{-2}	0.202	0.73×10 ⁻¹	0.95	0.068
	973	8.30×10^{-2}	0.025	2.61×10 ⁻¹	0.99	0.043
	1023	9.20×10^{-2}	0.008	3.71×10 ⁻¹	0.99	0.055
	1073	12.80×10^{-2}	0.005	4.69×10 ⁻¹	1.00	0.028
LH-3	923	17.75×10^{-1}	0.679	8.32×10^{-14}	-2.22	0.642
	973	13.91 × 10 ⁻¹	0.772	9.96 × 10 ⁻¹¹	-3.15	1.297
	1023	14.91×10^{-1}	0.740	6.46 × 10 ⁻¹¹	-2.90	1.503
	1073	15.07×10^{-1}	0.736	5.76×10^{-10}	-2.79	1.606
LH-4	923	1.61×10^{-1}	0.070	1.19×10 ⁻¹	0.95	0.070
	973	8.14×10^{-1}	0.865	-0.40×10 ⁻¹	0.92	0.155
	1023	7.69×10^{-1}	0.823	-11.67×10^{0}	0.82	0.327
	1073	7.83×10^{-1}	1.073	-12.91×10 ⁰	0.33	0.661
LH-5	923	3.06×10^{-1}	0.070	1.14 ×10 ⁻²	0.97	0.059
	973	6.55×10^{-1}	0.040	4.26 ×10 ⁻⁹	0.97	0.100
	1023	15.42×10^{-1}	0.121	3.68 ×10 ⁻¹⁴	0.90	0.245
	1073	16.27×10^{-1}	0.122	1.04 ×10 ⁻¹⁴	0.90	0.254
LH-6	923	3.43×10^{-1}	0.002	1.01×10 ⁻¹	0.97	0.060
	973	7.82×10^{-1}	0.407	-0.42×10 ⁻¹	0.89	0.180
	1023	9.29×10^{-1}	1.029	-14.12×10 ⁰	0.57	0.498
	1073	10.22×10^{-1}	2.062	-15.72×10 ⁰	0.07	0.780

Bảng 3. Các thông số động học được tính toán từ các mô hình LH được đề xuất

Các thông số thu được từ mô hình LH-2 và LH-5 được sử dụng để tính các giá trị năng lượng hoạt hóa, biến thiên enthalpy thực nghiệm, ΔH_{ads} và biến thiên entropi hấp phụ thực nghiệm, ΔS_{ads} . Kết quả được tóm tắt trong bảng 4. Chỉ các giá trị tính toán từ mô hình LH-2 thỏa mãn tiêu chí BMV với R² trên 0,90 trong khi dữ liệu này cho mô hình LH-5 là R² = 0,43. Đáng nói năng lượng hoạt hóa tính toán cho mô hình LH-2 (hình 5) là 25,9 kJ/mol, không khác nhiều so với giá trị thu được từ định luật lũy thừa, chứng tỏ sự phù hợp của cơ chế đề xuất của phản ứng CO₂ reforming trên xúc tác 5%La-10%Co/Al₂O₃

Bảng 4. Các ước tính của mô hình LH 2 và mô hình 5 cho các tiêu chí BMV

STT	Chất	ΔH _{exp} (kJ/mol)	ΔS_{exp} (J/mol. K)	E _a (kJ/mol)	R ²	BMV
2	CH ₄	200.8	-233.7	25.96	0.93	Đạt
	CO ₂	96.5	-84.8		0.90	Đạt
5	CH ₄	45.1	-24.3	97.65	0.43	Không
	CO_2	1580.3	-769.1		0.93	Đạt

Hình 5. Ước tính năng lượng hoạt hóa từ Mô hình LH-2

Hình 6. Biểu đồ chẵn lẻ cho tốc độ phản ứng của CH4 bằng mô hình động học Langmuir-Hinshelwood

Biểu đồ chẵn lẻ thể hiện trong hình 6 cho thấy sự tương quan tốt giữa giá trị thực nghiệm và giá trị tính toán theo mô hình Langmuir-Hinshelwood. Từ đó cơ chế để xuất cho phản ứng CO₂ reforming trên xúc tac 5%La-10%Co/Al₂O₃ là có sự hấp phụ liên kết hai vị trí kép của cả CH₄ và CO₂ trên tâm xúc tác và được thể hiện như sau:

$$CO_{2} + Cat \leftrightarrow CO_{2} - Cat$$
$$CH_{4} + Cat \leftrightarrow CH_{x} - Cat + \frac{(4-x)}{2}H_{2}$$
$$CH_{x} - Cat + CO_{2} - Cat \leftrightarrow 2CO + \frac{x}{2}H_{2} + 2Cat$$

3.4 Khảo sát độ bền của xúc tác

Độ bền của xúc tác 5%La-10%Co/Al₂O₃ cho phản ứng CO₂ reforming được khảo sát trong 48 giờ ở điều kiện tỉ lệ nguyên liệu bằng 1 và nhiệt độ 1023 K. Kết quả độ chuyển hóa của tác chất theo thời gian được

thể hiện ở hình 7. Sự mất hoạt tính của xúc tác là không thể tránh khỏi trong suốt quá trình phản ứng, tuy nhiên, với xúc tác 5%La-10%Co/Al₂O₃ của nghiên cứu này, mức độ giảm độ chuyển hóa tương đối nhỏ của CO_2 (0.05%/giờ) và CH_4 (0.03%/giờ) chỉ ra rằng xúc tác có độ bền tốt. Kết quả này khẳng định vai trò của chất xúc tiến La₂O₃ trong việc hạn chế sự tích lũy cacbon trên bề mặt xúc tác và kéo dài tuổi thọ của chất xúc tác.

Hình 7. Độ chuyển hóa của tác chất theo thời gian trong phản ứng reforming trên xúc tác 5%La10%Co/Al₂O₃ ở nhiệt độ 1023 K và tỉ lệ nhập liệu là 1

4. KẾT LUẬN

Trong nghiên cứu này, xúc tác 5%La-10%Co/Al₂O₃ đã được tổng hợp bằng phương pháp đồng tẩm khô và các đặc tính của xúc tác được làm sáng tỏ. Sau quá trình tẩm, xúc tác vẫn giữ được cấu trúc xốp và cobalt hình thành trên chất mang ở dạng 2 pha rõ rệt là Co₃O₄ và CoAl₂O₄. Tất cả Cobalt oxit đều chuyển hóa thành Cobalt kim loại khi thực hiện quá trình khử ở 1073 K. Kết quả khảo sát hoạt tính xúc tác 5%La-10%Co/Al₂O₃ cho phản ứng CO₂ reforming cho thấy, sự hiện diện quá nhiều của CH₄ tạo điều kiện thuận lợi cho việc tạo cốc từ quá trình phân hủy CH₄ dẫn đến tắc nghẽn các tâm hoạt của chất xúc tác, đồng thời làm cho độ chuyển hóa của CO₂ tăng lên thông qua quá trình reforming. Ở hướng ngược lại, khi nguyên liệu giàu CO₂, quá trình chuyển hóa CH₄ tăng lên trong khi độ chuyển hóa của CO₂ có xu hướng giảm xuống do sự thiếu hụt tác chất CH₄. Cuối cùng, phản ứng CO₂ reforming trên xúc tác 5%La-10%Co/Al₂O₃ được chứng tỏ là tuân theo sự hấp phụ liên kết hai vị trí kép của cả CH₄ và CO₂ trên tâm xúc tác. Chất xúc tác cũng có độ ổn định tốt trong 48 giờ với tốc độ giảm độ chuyển hóa không đáng kể của tác chất CO₂ và CH₄ mở ra khả năng ứng dụng trong sản xuất khí tổng hợp trên quy mô lớn.

LỜI CẢM ƠN

Chúng tôi cũng xin cảm ơn các nhà khoa học đã phản biện, góp ý để chúng tôi hoàn thiện hơn bài viết của mình

TÀI LIỆU THAM KHẢO

[1]. F. Chien, H. W. Kamran, G. Albashar, W. Iqbal, "Dynamic planning, conversion, and management strategy of different renewable energy sources: a sustainable solution for severe energy crises in emerging economies", *International Journal of Hydrogen Energy*, *46*(11), 7745-7758, 2021.

[2]. Z. Abdin, A. Zafaranloo, A. Rafiee, W. Mérida, W. Lipiński, K. R. Khalilpour, "Hydrogen as an energy vector", *Renewable and Sustainable Energy Reviews*, 120, 109620-109625, 2020.

[3]. C. Cunanan, M.K. Tran, Y. Lee, S. Kwok, V. Leung, M. Fowler, "A review of heavy-duty vehicle powertrain technologies: Diesel engine vehicles, battery electric vehicles, and hydrogen fuel cell electric vehicles", *Clean Technologies*, *3*(2), 474-489, 2021.

[4]. B. Kura, A.K. Bagchi, P.K. Singal, M. Barancik, T.W. LeBaron, K. Valachova, L. Šoltés, J. Slezák, "Molecular hydrogen: Potential in mitigating oxidative-stress-induced radiation injury", *Canadian Journal of Physiology and Pharmacology*, 97(4), 287-292, 2019.

[5]. J. De Vrieze, K. Verbeeck, I. Pikaar, J. Boere, A. Van Wijk, K. Rabaey, W. Verstraete, "The hydrogen gas biobased economy and the production of renewable building block chemicals, food and energy", *New Biotechnology*, 55, 12-18, 2020.

[6]. Y.V. Joshi, A.S. Mennito, S.H. Brown, K. Qian, "Ultra-low hydrogen content bowl-shaped polycyclic aromatic hydrocarbons in petroleum", *Fuel*, 301, 121066-121069, 2021.

[7]. A. Abdulrasheed, A.A. Jalil, Y. Gambo, M. Ibrahim, H.U. Hambali, M.Y.S. Hamid, "A review on catalyst development for dry reforming of methane to syngas: Recent advances", *Renewable and Sustainable Energy Reviews*, *108*, 175-193, 2019.

[8]. N.T. Tran, Q.V. Le, N.V. Cuong, T. D. Nguyen, N.H.H. Phuc, P.T.T. Phuong, M.U. Monir, A. A. Aziz, Q.D. Truong, S.Z. Abidin, S. Nanda, D-V. N. Vo, "La-doped cobalt supported on mesoporous alumina catalysts for improved methane dry reforming and coke mitigation", *Journal of the Energy Institute*, 93(4), 1571-1580, 2020.

[9]. J.T. Richardson, S.A. Paripatyadar, "Carbon dioxide reforming of methane with supported rhodium", *Applied Catalysis*, 61(1), 293-309, 1990.

[10]. C. Pichas, P. Pomonis, D. Petrakis, A. Ladavos, "Kinetic study of the catalytic dry reforming of CH₄ with CO₂ over La_{2-x}Sr_xNiO₄ perovskite-type oxides", *Applied Catalysis A: General*, *386*(1-2), 116-123, 2010.

[11]. C.K. Cheng, S.Y. Foo, A.A. Adesina, "Glycerol steam reforming over bimetallic Co- Ni/Al₂O₃", *Industrial & Engineering Chemistry Research*, 49(21),10804-10817, 2010.

[12]. T. Osaki, T. Horiuchi, K. Suzuki, T. Mori, "Catalyst performance of MoS₂ and WS₂ for the CO₂-reforming of CH₄ suppression of carbon deposition", *Applied Catalysis A: General*, 155(2), 229-238, 1997.

[13]. S.Y. Foo, C.K. Cheng, T.H. Nguyen, A.A. Adesina, "Kinetic study of methane CO₂ reforming on Co–Ni/Al₂O₃ and Ce–Co–Ni/Al₂O₃ catalysts", *Catalysis Today*, *164* (1), 221-226, 2011.

[14]. S.Z. Mohammadi, H. Beitollahi, H. Allahabadi, T. Rohani, "Disposable electrochemical sensor based on modified screen-printed electrode for sensitive cabergoline quantification", *Journal of Electroanalytical Chemistry*, *847*,113223, 2019.

[15]. F. Fayaz, L.G. Bach, M.B. Bahari, T.D. Nguyen, K. B. Vu, R. Kanthasamy, C. Samart, C. Nguyen-Huy, D-V. N. Vo, "Stability evaluation of ethanol dry reforming on Lanthania-doped cobalt-based catalysts for hydrogen-rich syngas generation", *International Journal of Energy Research*, 43(1), 405-416, 2019.

[16]. M.N.N. Shafiqah, H.N. Tran, T.D. Nguyen, P.T.T. Phuong, B. Abdullah, S.S. Lam, P. Nguyen-Tri, R. Kumar, S. Nanda, D-V. N. Vo, "Ethanol CO₂ reforming on La₂O₃ and CeO₂-promoted Cu/Al₂O₃ catalysts for enhanced hydrogen production", *International Journal of Hydrogen Energy*, *45*(36), 18398-18410, 2020.

[17]. A. Jean-Marie, A. Griboval-Constant, A.Y. Khodakov, E. Monflier, F. Diehl, "β-Cyclodextrin for design of alumina supported cobalt catalysts efficient in Fischer–Tropsch synthesis", *Chemical Communications*, 47(38), 10767-10769, 2011.

[18]. B.V. Ayodele, M.R. Khan, C.K. Cheng, "Syngas production from CO₂ reforming of methane over ceria supported cobalt catalyst: Effects of reactants partial pressure", *Journal of Natural Gas Science and Engineering*, 27, 1016-1023, 2015.

[19]. M.A. Naeem, A.S. Al-Fatesh, W.U. Khan, A.E. Abasaeed, A.H. Fakeeha, "Syngas production from dry reforming of methane over nano Ni polyol catalysts", *International Journal of Chemical Engineering and Application*, *4*(5), 315, 2013.

[20]. S. Sato, R. Takahashi, M. Kobune, H. Gotoh, "Basic properties of rare earth oxides", *Applied Catalysis A: General*, 356(1), 57-63, 2009.

[21]. Lavoie, "Review on dry reforming of methane, a potentially more environmentally friendly approach to the increasing natural gas exploitation", *Frontiers in Chemistry*, 2, 81, 2014.

[22]. S.Y. Foo, C.K. Cheng, T.H. Nguyen, A.A. Adesina, "Evaluation of lanthanide-group promoters on Co–Ni/Al₂O₃ catalysts for CH₄ dry reforming", *Journal of Molecular Catalysis A: Chemical*, 344(1-2), 28-36, 2011.

[23]. A. Donazzi, A. Beretta, G. Groppi, P. Forzatti, "Catalytic partial oxidation of methane over a 4% Rh/α-Al₂O₃ catalyst: Part I: Kinetic study in annular reactor", *Journal of Catalysis*, 255(2), 241-258, 2008.

[24]. O. Omoregbe, H.T. Danh, C. Nguyen-Huy, "Syngas production from methane dry reforming over Ni/SBA-15 catalyst: Effect of operating parameters", *International Journal of Hydrogen Energy*, *42*(16), 11283-11294, 2017.

[25]. J. Guo, H. Lou, H. Zhao, D. Chai, X. Zheng, "Dry reforming of methane over nickel catalysts supported on magnesium aluminate spinels", *Applied Catalysis A: General*, 273(1-2), 75-82, 2004.

[26]. M. Ocsachoque, F. Pompeo, G. Gonzalez, "Rh–Ni/CeO₂–Al₂O₃ catalysts for methane dry reforming", *Catalysis Today*, *172*(1), 226-231, 2011.

THE KINETIC STUDY OF CO₂ REFORMING WITH CH₄ USING La₂O₃ PROMOTED COBALT SUPPORTED ALUMINA CATALYST

TRAN NGOC THANG^{*}, BACH THI MY HIEN Faculty of Chemical Engineering, Industrial University of Ho Chi Minh City ^{*}Corresponding author: tranngocthang@iuh.edu.vn

Abstract. The CO₂ reforming reaction has recently emerged as a promising method for producing syngas from CO₂-rich natural gas. Whereas the Co-based materials with the addition of promoter appeared to be potential catalysts and gained much attention since they not only own considerable catalytic activity for CO₂ reforming reaction but are also suitable for large-scale applications. The performance of 5%La-10%Co/Al₂O₃ catalyst in CO₂ reforming reaction at various reaction temperatures while alternating initial partial pressure of CH₄ and CO₂ have been studied. The catalytic evaluation revealed that the excessive presence of CH₄ could facilitate the direct CH₄ decomposition resulting in catalyst active site blockage. The increment of P_{CH_4} also gave rise to greater CH₄ adsorption on the catalyst surface, consequently elevating the CO₂ intake through the reaction. The increase of P_{CO_2} provoked the gasification rate improvement of deposited carbon from methane dissociation, therefore motivating the CH₄ conversion. The consumption rate of CH₄ was evidenced to be more sensitive toward the changes in reaction temperature than CO₂. The CO₂ reforming reaction performed over 5%La-10%Co/Al₂O₃ catalyst was convinced to follow an associative adsorption mode of CH₄ and CO₂ on dual or different active sites and the catalyst exhibited a good stability during 48 h reaction at 1023 K.

Keywords. Syngas, CO₂ reforming methane, kinetic study, cobalt catalyst, alumina.

Ngày gửi bài: 06/03/2023 Ngày chấp nhận đăng: 24/05/2023