
Journal of Science and Technology, Vol. 64, 2023 

© 2023 Industrial University of Ho Chi Minh City 

ADAPTIVE NEURAL TRACKING CONTROL FOR SURFACE SHIP WITH 

COMPENSATED TRACKING ERROR-CONSTRAINS AND DELAY INPUT                                                   

BASED ON COMMAND-FILTER 

HOANG THI TU UYEN  

Faculty of Electrical Engineering Technology, Industrial University of Ho Chi Minh City 

hoangthituuyen@iuh.edu.vn 

DOIs: https://doi.org/10.46242/jstiuh.v64i04.4891 

Abstract. The article proposes an algorithm for trajectory tracking control problem of full actuated surface 

ships in the presence of state constraints, the delay of the input signal, and uncertain model parameters. 

During the design process, radial basis function neural networks are used to approximate the nonlinear 

components of uncertainty and a symmetric barrier Lyapunov function is incorporated to cope with the 

constraints of compensated tracking error. In particular, an auxiliary system is employed to eliminate the 

delay of the input signals, which often makes the control performance worse, even unstable. The adaptive 

controller that the article proposes is built based on the backstepping method using a command filter to 

avoid derivative explosion and reduce the computational burden on the controller. The article shows that 

tracking errors of surface ship can converge to a small neighborhood of zero, the compensated tracking 

error constraints of the system are not violated, the system is still stable when the input signal is delayed. 

Keywords.  Adaptive neural tracking control, Radial basis function neural networks, Auxiliary system, 

Command filtering backstepping, Barrier Lyapunov function. 

 

Abbreviations 

DoF Degree of freedom BLF Barrier Lyapunov function 

NN Neural network RBF Radial basis function 

DSC Dynamic surface control ACF Adaptive command filter 

MIMO Multi-input and multi-output AACF Adaptive auxiliary system -

command filter 

1 INTRODUCTION 

Marine surface ships have a great role in the fields of transportation, survey, monitoring, research, and 

restoration of the marine environment and many military applications [1-3]. Controlling marine surface 

ship to track a predefined trajectory when moving at sea will reduce labor, and accurate tracking has special 

significance in surveying the marine environment and the military. Therefore, controlling the surface ships 

to follow a desired  trajectory has attracted more and more attention [4, 5]. However, to guarantee stability 

of surface ships in harsh ocean environment is a challenging problem for nonlinear control design and 

development. Firstly, ocean environment always contains complex, unstructured factors such as ocean 

currents, waves and winds, which create unpredictable disturbances for the control system. Second, the ship 

dynamics are highly nonlinear and contain unknown parameters or uncertain external disturbances [6, 7]. 

The presence of non-parametric uncertainty creates modeling errors and makes traditional model-based 

controllers unfeasible. Third, ship dynamics always contain multiple degrees of freedom (DoFs) and 

interact with each other, when noise in one DoF can propagate to other DoFs, causing performance 

degradation or even destabilization. In addition, the existence of input delay and the constraints are also a 

challenge in trajectory tracking of surface ships. The presence of input delay and state constraint in many 

practical engineering applications is indispensable and unavoidable, it appears in various forms such as 

saturation, delay of magnetic field, physical discontinuity, performance characteristics and others [8-10]. 

The existence of input delay and the violation of constraints could degrade the performance of control 

systems, even destabilizes the system, cause collisions which lead to tremendous economic loss and 
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environmental pollution. Therefore, the control of this problem is very important in the control design 

process for surface ships.  

For the first three problems, many control methods have been developed for surface ships. For example, 

the tracking control method is based on the backstepping approach, the sliding mode tracking control 

method is proposed based on the exact model [11, 12]. In recent years, adaptive neural network (NN) control 

schemes have been used to approximate complex nonlinear systems with high uncertainty due to their 

inherent approximation capabilities.[13-15]. Features of adaptive neural network control include: (i) the 

design and analysis based on Lyapunov stability theory; (ii) stability and performance of the closed-loop 

control system can be readily determined; (iii) neural network weights are tuned online, using a Lyapunov 

synthesis method, rather than optimization techniques. As a result, adaptive neural network control 

overcomes the disadvantage of the optimization-based neural network controller, which is difficult to derive 

analytical results for stability analysis and performance evaluation of the closed-loop system [16]. In many 

studies, the authors have designed the controller based on the backstepping approach [4, 17], the unknown 

nonlinear functions are approximated by the neural network. However, in the traditional backstepping 

approach there exists the problem of explosive complexity caused by the repeated differentiations of the 

virtual control signals. To solve the issue of explosive complexity and reduce the computational burden, 

dynamic surface control (DSC) has been proposed [18, 19]. Nevertheless, the DSC methods do not 

compensate for filter errors which would degrade the control performance. In order to meliorate control 

performance, command filtered-based adaptive backstepping control method was first presented in [20], 

the virtual control signal is approximated by the output signal of the command filter at each step of the 

backstepping control design, and filter errors were eliminated by using the compensating system. In the 

literature [21], the authors utilized a command filter to design the tracking controller of underactuated 

surface ship, but did not take into account the input delay. 

Due to the physical characteristics of the actuator, the existence of delay is unavoidable in practical 

engineering, which makes the controller unable to respond in time to changes of system state. This causes 

the characteristics of system to deteriorate, even to fall into an unstable state. To solve the daedal issue, 

many researchers have carried out research on this problem [22, 23]. In the literature [24], the authors used 

the command filter algorithm in combination with the auxiliary system to tackle the input delay and 

saturation problem for nonlinear multi-input and multi-output (MIMO) state constrained systems. 

Similar to the input delay, the state constraint problem is also a challenging task. In cases the route of ship 

is strictly limited by both sides of the trajectory, such as when the ship is moving through a narrow channel, 

or when exploring through the seas with many obstacles, the tracking error constrained problem should be 

considered to ensure the safety of navigation for the vehicle. There have been many studies to solve the 

constraint problem. Among the methods used to deal with the constraint problem, the barrier Lyapunov 

function (BLF) can ensure that the constraint is not violated by using the Lyapunov stability method to keep 

the BLF bound. Tee et al investigated the issue of time-varying output constraints by utilizing a time-

varying BLF function [8]. Chen and Ge presented this control approach for MIMO systems [9], Jin et al 

employed this method to control fault toleration [25, 26]. It has also been used in practical applications, 

such as marine vessels [21, 27, 28], but the issue of input delay has been taken no account in these works. 

In this brief, we present an adaptive trajectory tracking controller for a 3-DoF fully actuated surface ship 

with parametric or functional uncertainties, the existence of input delay and state constraints. The 

contributions of this brief are summarized as follows: 

1) Based on adaptive neural networks to approximate the unknown nonlinear functions in dynamic 

model of the surface ship. 

2) The tracking error constraints is tackled by BLF. 

3) The input delay is handled through the auxiliary system and command filter. The integration of the 

command filter and the backend system into the control law also avoids the explosion of complexity. 

4) It is proven that the system is stable, the output signals converge to a neighborhood of the reference 

trajectories, the compensated tracking error constraints are not violated, and the states of the closed system 

are bounded. 

The rest of the brief is organized as follows. Section II introduces dynamics of 3-DoF fully actuated surface 

ship and preliminaries. Section III presents the steps of controller design and stability analysis. In Section 
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IV, a simulation example is given to illustrate the feasibility of the proposed control. Finally, a conclusion 

is provided in Section V. 

2 PROBLEM FORMULATION AND PRELIMINARIES 

Throughout this brief, |·| represents the absolute value of a scalar, and ⟨∙⟩ represents the absolute value of 

each component of a vector, i.e., for a vector 𝒙 ∈  𝑅𝑛, ⟨𝒙⟩ = [|𝑥1|, |𝑥2|, … , |𝑥𝑛|]𝑇. In addition, ‖. ‖ 

represents the Euclidean norm of a vector. For a vector 𝒂 ∈  𝑅𝑛, 𝑎𝑖 (𝑖 =  1, 2, . . . , 𝑛) means the 

corresponding 𝑖th component of a. For any vectors 𝒂 ∈  𝑅𝑛 and 𝒃 ∈  𝑅𝑛, 𝒂 <  𝒃 means 𝑎𝑖  <  𝑏𝑖, 𝑖 =
 1, 2, . . . , 𝑛, and ⟨a⟩ <  𝒃 means |𝑎𝑖|  <  𝑏𝑖 . 

2.1 Problem Formulation 

In this section, we consider MIMO dynamics of a 3-DoF surface ship with uncertainties. The surface ship 

in the horizontal plane is shown in Figure 1 [29] 

 

Figure 1. Motion variables for surface ship 

 The dynamics of  a 3-DoF surface ship are described as follows [29, 30]: 

 {
𝜼 ̇ = 𝑱(𝜼)                                                                  

𝑴 ̇ + 𝑪( ) + 𝑫( ) + 𝒈(𝜼) + ∆(𝜼,   ) = 𝝉
 (1)  

Where output 𝜼 = [𝑥, 𝑦, ] denotes position (x, y) and yaw angle around z-axis (𝜓) of ship in the earth-

fixed frame;  = [𝑢, 𝑣, 𝑟] represents linear velocities along x-axis (u), y-axis (v) and angular velocity 

around z-axis (r), respectively in the body-fixed frame; M is the symmetric positive definite inertia matrix 

of the ship. The parameters of M are constant and are determined quite accurately [30] using semi-empirical 

methods or hydrodynamic computations programs; 𝑪( ) is the total Coriolis and centripetal acceleration 

matrix; 𝑫( ) is the damping matrix; 𝑱(𝜼) is the 3DOF rotation matrix; 𝒈(𝜼) is the vector of 

gravitational/buoyancy forces and moments; ∆(𝜼, ) is the vector of unknown modeling errors and 

environmental disturbances; 𝝉 ∈ 𝑅3 is the vector of control inputs. The coefficients in the rotation matrix 

𝑱(𝜼) are given by: 

 𝑱(𝜼) =  [
cos 𝜓 − sin 𝜓 0
sin 𝜓 cos 𝜓 0

0 0 1
] 

 

(2) 

  

where: 𝑱(𝜼)𝑇𝑱(𝜼) = 𝑰. 

 

 
𝑴 =  [

𝑚 − 𝑋�̇� 0 0
0 𝑚 − 𝑌�̇� 𝑚𝑥𝑔 − 𝑌�̇�

0 𝑚𝑥𝑔 − 𝑁�̇� 𝐼𝑧 − 𝑁�̇�

] 
(3) 

  

The coefficients in the matrix 𝑪( ), 𝑫( ) and vectors 𝒈(𝜼), ∆(𝜼,  ) are given by: 
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             𝑪( ) = [

0 0 −(𝑚 − 𝑌�̇�)𝑣 − (𝑚𝑥𝑔 − 𝑌�̇�)𝑟

0 0 (𝑚 − 𝑋�̇�)𝑢

(𝑚−𝑌�̇�)𝑣 + (𝑚𝑥𝑔 − 𝑌�̇�)𝑟 −(𝑚 − 𝑋�̇�)𝑢 0

]                (4)  

 𝑫( ) = 𝑫 + 𝑫𝑛( ) 
  

(5) 

 𝑫 = [

−𝑋𝑢 0 0
0 −𝑌𝑣 −𝑌𝑟

0 −𝑁𝑣 −𝑁𝑟

]   

 𝑫𝑛( ) =  [

−𝑋|𝑢|𝑢|𝑢| 0 0

0 −𝑌|𝑣|𝑣|𝑣| − 𝑌|𝑟|𝑣|𝑟| −𝑌|𝑣|𝑟|𝑣| − 𝑌|𝑟|𝑟|𝑟|

0 −𝑁|𝑣|𝑣|𝑣| − 𝑁|𝑟|𝑣|𝑟| −𝑁|𝑣|𝑟|𝑣| − 𝑁|𝑟|𝑟|𝑟|

]   

 

 
𝒈(𝜼) = [

𝑔1(𝜼)
𝑔2(𝜼)
𝑔3(𝜼)

] 𝑎𝑛𝑑 ∆(𝜼, ) = [

∆1(𝜼, )
∆2(𝜼, )
∆3(𝜼, )

] 
(6) 

  

where 𝑪( ), 𝑫( ), 𝒈(𝜼), ∆(𝜼,  ) are unknown function matrices and vectors, depending on positional 

and velocity vector. {𝑋(.), 𝑌(.), 𝑁(.)} are the coefficients which represent hydrodynamic parameters according 

to the notation of The Society of Naval Architects and Marine Engineers [29] .  

Let 𝒙1 = 𝜼, 𝒙2 =   and consider the input signal of the system 𝝉(𝑡 − 𝑡𝑑) with the known time delay 

𝑡𝑑, which satisfies 0 ≤ 𝑡𝑑 ≤ 𝑡𝑑𝑚𝑎𝑥, 𝑡𝑑𝑚𝑎𝑥 is a known constant. Then the dynamics of the surface ship (1) 

can be rewritten as: 

 {
�̇�1 = 𝑱(𝒙1)𝒙2                                                                                                    

�̇�2 = 𝑴−𝟏[𝝉(𝑡 − 𝑡𝑑) − 𝑪(𝒙2)𝒙2 − 𝑫(𝒙2)𝒙2 − 𝒈(𝒙1) − ∆(𝒙1, 𝒙2 )]   
 (7)  

The control objective of this brief is to design an adaptive NN controller for the surface ship such that: 

1) the output 𝒚(𝑡) = 𝒙1(𝑡) converges to a neighborhood of the desired trajectory 𝒚𝑑(𝑡) = 𝒙𝑑(𝑡) =
[𝑥𝑑1(𝑡), 𝑥𝑑2(𝑡), 𝑥𝑑3(𝑡) ]𝑇  2) all the closed-loop signals remain bounded. The following assumptions will 

be used to achieve our control objective. 

Assumption 1: The disturbance of the environment is bounded, so there exists a positive constant vector 

𝒃 = [𝑏1, 𝑏2, 𝑏3]𝑇, such that ⟨∆⟩ <  𝒃. 

Assumption 2: the desired trajectory is continuous, bounded and known, so there exists a positive 

constant vector 𝒌𝑐 = [𝑘𝑐1, 𝑘𝑐2, 𝑘𝑐3]𝑇 satisfying 〈𝒙𝑑(𝑡)〉  ≤ 𝒌𝑐  . And its first-order time derivative �̇�𝑑(𝑡) is 

continuous bounded. 

2.2 Preliminaries 

Lemma 1.[24, 31]  . For any positive constant 𝑘𝑑𝑖 and variable 𝑧𝑖, the following inequality can be 

obtained, when 𝑧𝑖 satisfies the inequality |𝑧𝑖 | < 𝑘𝑑𝑖,  

 log
𝑘𝑑𝑖

2

𝑘𝑑𝑖
2 − 𝑧𝑖

2 ≤
𝑧𝑖

2

𝑘𝑑𝑖
2 − 𝑧𝑖

2 (8)  

Lemma 2 [20, 24] . The command filter is proposed to avoid the explosion of complexity as follows: 

 �̇�1 = 𝜔𝑛𝜓2 (9)  

 �̇�2 = −2𝜁𝜔𝑛𝜓2 − 𝜔𝑛(𝜓1 − 𝛼1) (10)  

when the input signal 𝛼1 satisfies | �̇�1|  ≤  𝜌1 and |�̈�1|  ≤  𝜌2 for all 𝑡 ≥  0, where 𝜌𝑖  ≥  0, 𝑖 =  1, 2, the 

initial conditions of command filter are 𝜓1(0)  =  𝛼1(0), and 𝜓2(0)  =  0. For any positive constant 𝛽, 

there exists filter design parameters 𝜔𝑛  ≥  0 and 0 ≤  𝜁 ≤  1 such that the filter error |𝜓1  −  𝛼1|  ≤  𝛽 

and |�̇�1|, |�̈�1|, |𝜓1 | are bounded. There exists a constant 𝜗 satisfying |�̇�1|  ≤  𝜗. 

Lemma 3 [32] . An unknown continuous nonlinear function 𝑓(𝒙) ∶ 𝑅𝑚 → 𝑅 can be approximated to 

arbitrary accuracy by using the radial basis function (RBF) NN on a compact set Ω𝒙 ⊂ 𝑅𝑚 as follows: 

 𝑓(𝒙) = 𝑊∗𝑇𝑆(𝒙) + 𝜖(𝒙), ∀𝒙 ∈  Ω𝒙 (11)  
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Where 𝑊∗ = [𝑤1
∗, … , 𝑤𝑛

∗] ∈ 𝑅𝑛 (𝑛 is node number of the NN) is the ideal constant weight vector, 𝒙 ∈ 𝑅𝑚 is 

the input vector of the NN. 𝜖(𝒙) is the approximation error satisfying |𝜖(𝑥)|  ≤  𝜖∗(𝜖∗ >  0 is an unknown 

constant). S(𝒙) = [𝑠1(𝒙), … , 𝑠𝑛(𝒙)]𝑇 is the radial basis function vector where 𝑠𝑖(𝒙) are the Gaussian 

functions, which have the form: 

𝑠𝑖(𝒙) = 𝑒𝑥𝑝 [
−(𝒙 − 𝜇𝑖)𝑇(𝒙 − 𝜇𝑖)

ϛ𝑖
2 ] , 𝑖 = 1,2, … , 𝑛 

Lemma 4 [24]. the auxiliary system defined as follows: 

 {

λ̇𝑖,1 = λ𝑖,2  − 𝑝𝑖,1λ𝑖,1                                                 

λ̇𝑖,𝑗 = λ𝑖,𝑗+1  − 𝑝𝑖,𝑗λ𝑖,𝑗                                             

λ̇𝑖,𝑛𝑖
=  −𝑝𝑖,𝑛𝑖

λ𝑖,𝑛𝑖
+ 𝑢𝑖(𝑣𝑖(𝑡 − 𝑡𝑑)) − 𝑢𝑖(𝑣𝑖(𝑡))

 

 

(12) 

where 𝑝𝑖,1 >
1

2
, 𝑝𝑖,𝑗 > 1, 𝑝𝑖,𝑛𝑖

>
1

3
(𝑖 = 1,2, … , 𝑛; 𝑗 = 2, … , 𝑛 − 1) are designed parameters and the initial 

condition of this auxiliary system is 𝜆(0) = 0. 
The auxiliary system defined in (12) has state bounded by 

 ‖𝜆(𝑡)‖ ≤ √
2𝜌

𝜒
 (13)  

where 𝜒 = min {2 (𝑝𝑖,1 −
1

2
) , 2(𝑝𝑖,𝑗 − 1), 2 (𝑝𝑖,𝑛𝑖

−
3

2
) , 𝑖 = 1,2, … , 𝑛; 𝜌 = ∑ 𝑢𝑀𝑖

2𝑛
𝑖=1 , 𝑢𝑀𝑖 is the known 

bound of 𝑢𝑖(. ) 

3 CONTROL DESIGN AND STABILITY ANALYSIS 

3.1 Control Design Steps  

Due to the input of the system has a delay, an auxiliary system is used to eliminate the effect of the input 

delay, constructed as follows:  

 {
�̇�1 = 𝑱(𝒙)𝛌2  − 𝑷1𝛌1                             

�̇�2 = −𝑷2𝛌2+𝑴−𝟏[𝝉(𝑡 − 𝑡𝑑) − 𝝉(𝑡)] 
 (14)  

where 𝑷1, 𝑷2 are positive constant diagonal matrices 

𝑷1 = [

𝑝1,1 0 0

0 𝑝1,2 0

0 0 𝑝1,3

] , 𝑷2 = [

𝑝2,1 0 0

0 𝑝2,2 0

0 0 𝑝2,3

] 

The tracking errors of the adaptive neural command-filtered control are defined: 

 {
𝒆1 = 𝒙1 − 𝛌1  − 𝒙𝑑  
𝒆2 = 𝒙2 − 𝛌2  − 𝒙2𝑐  

 (15)  

where 𝒙2𝑐 is the output vector of the command filter with the virtual controller 𝜶1 as the input and 𝒙𝑑 is 

the desired tracking signal vector. The command filter is described as follows: 

 {
�̇�2𝑐 = 𝜔𝑛𝒙2𝑑                                        

�̇�2𝑑 = −2𝜁𝜔𝑛𝒙2𝑑 − 𝜔𝑛(𝒙2𝑐 − 𝜶1) 
 

 
(16)  

where according to the Lemma 2: 𝜔𝑛  ≥ 0 and 0 ≤ 𝜁 ≤ 1  

Due to the command filter can create filtering errors which affect the dynamic characteristics of the system, 

so it is necessary to use the error compensation to eliminate the filtering errors. Let 𝝃1 is the error 

compensation signal vector defined as: 

 �̇�1 = −𝑪1𝝃1 + 𝑱(𝒙1)(𝒙2𝑐 − 𝜶1) = (�̇�1,1, �̇�1,2, �̇�1,3)𝑇 (17)  

where 𝑪1 is a positive constant diagonal matrix: 

𝑪1 = [

𝑐1,1 0 0

0 𝑐1,2 0

0 0 𝑐1,3

] 
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According to the Lemma 4 in [20], the outputs of system (17) are bounded 〈𝝃1〉 ≤
𝜷

2𝜅0
 where according 

Lemma 2, 𝜷 is boundedness of the input 〈(𝒙2𝑐 − 𝜶1)〉 < 𝜷, 𝜅0 = 0.5min{𝑐1,1, 𝑐1,2, 𝑐1,3}  

Then the compensated tracking error signals are defined as: 

 {
𝒛1 = 𝒆1 − 𝝃1  
𝒛2 = 𝒆2            

 (18)  

The controller is designed in the following sequence: 

Step 1: Choose the Lyapunov function as: 

 𝑉1 = ∑
1

2
𝑙𝑜𝑔

𝑘𝑑1,𝑖
2

𝑘𝑑1,𝑖
2 − 𝑧1,𝑖

2

3

𝑖=1

 (19) 

where 𝑘𝑑1,𝑖 denotes the predefined constraint of compensated tracking error 𝑧1,𝑖 and  𝑘𝑑1,𝑖 is the design 

positive constant. 

The derivative of 𝑉1 is: 

 �̇�1 = ∑
𝑧1,𝑖. �̇�1,𝑖

𝑘𝑑1,𝑖
2 − 𝑧1,𝑖

2

3

𝑖=1

 (20) 

 According to (18): 

 𝒛1 = 𝒆1 − 𝝃1   

The time derivative of 𝒛1 can be obtained: 

 �̇�1 = �̇�1 − �̇�1 = �̇�1 − �̇�1 − �̇�𝑑 − �̇�1   

 �̇�1 = 𝑱(𝒙1)𝒙2 − 𝑱(𝒙1)𝛌2 + 𝑷1𝛌1 − �̇�𝑑 − �̇�1   

 �̇�1 = 𝑱(𝒙1)(𝒙2 − 𝛌2) + 𝑷1𝛌1 − �̇�𝑑 − �̇�1   

 �̇�1 = 𝑱(𝒙1)(𝒆2 + 𝒙2𝑐) + 𝑷1𝛌1 − �̇�𝑑 − �̇�1   

 �̇�1 = 𝑱(𝒙1)(𝒛2 + 𝒙2𝑐) + 𝑷1𝛌1 − �̇�𝑑 − �̇�1   

 �̇�1 = 𝑱(𝒙1)(𝒛2 + 𝒙2𝑐 − 𝜶1 + 𝜶1) + 𝑷1𝛌1 − �̇�𝑑 − �̇�1 (21)  

The virtual control vector 𝜶1 is designed as: 

 𝜶1 = 𝑱𝑻(𝒙1)(�̇�𝑑 − 𝑪1𝒆1 − 𝑷1𝛌1) = (𝛼1,1, 𝛼1,2, 𝛼1,3)𝑇  (22)  

Substituting (17),(22) to (21), we have: 

 
�̇�1 = 𝑱(𝒙1). 𝒛2 + 𝑱(𝒙1)(𝒙2𝑐 − 𝜶1) + 𝑱(𝒙1)𝑱𝑻(𝒙1)(�̇�𝑑 − 𝑪1𝒆1 − 𝑷1𝝀1) + 𝑷1𝝀1

− �̇�𝑑 + 𝑪1𝝃1 − 𝑱(𝒙1)(𝒙2𝑐 − 𝜶1) 
(23)  

 �̇�1 = 𝑱(𝒙1). 𝒛2 − 𝑪1𝒛1 (24)  

From (24), we have:  

 �̇�1 = ∑ −
𝑐1,𝑖. 𝑧1,𝑖

2

𝑘𝑑1,𝑖
2 − 𝑧1,𝑖

2

3

𝑖=1

+ ∑
𝑧1,𝑖. 𝑱𝒊(𝒙1). 𝒛2

𝑘𝑑1,𝑖
2 − 𝑧1,𝑖

2

3

𝑖=1

 (25)  

 

Step 2:  

According to (18) 

 𝒛2 = 𝒆2 = 𝒙2 − 𝛌2  − 𝒙2𝑐 (26)  

The time derivative of 𝒛2 : 

 �̇�2 = �̇�2 − �̇�2  − �̇�2𝑐 (27)  

 
�̇�2 = 𝑴−𝟏[𝝉(𝑡 − 𝑡𝑑) − 𝑪(𝒙2)𝒙2 − 𝑫(𝒙2)𝒙2 − 𝒈(𝒙1) − ∆(𝒙1, 𝒙2 )]  

+ 𝑷2𝛌2− 𝑴−𝟏[𝝉(𝑡 − 𝑡𝑑) − 𝝉(𝑡)]   − �̇�2𝑐 
(28)  
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�̇�2 = 𝑴−𝟏[𝝉(𝑡) − 𝑪(𝒙2)𝒙2 − 𝑫(𝒙2)𝒙2 − 𝒈(𝒙1) − ∆(𝒙1, 𝒙2 ) + 𝑴𝑷2𝛌2

− 𝑴�̇�2𝑐] 
(29)  

The control law is chosen as follows: 

 

𝝉(𝑡) = 𝑪(𝒙2)𝒙2 + 𝑫(𝒙2)𝒙2 + 𝒈(𝒙1) + ∆(𝒙1, 𝒙2 ) + 𝑴�̇�2𝑐 − 𝑪2𝒆2 − 𝑴𝑷2𝛌2

− ∑
𝑧1,𝑖. 𝑱𝑖

𝑇(𝒙2)

𝑘𝑑1,𝑖
2 − 𝑧1,𝑖

2

3

𝑖=1

 
(30)  

where 𝑪2 is a positive constant diagonal matrix: 

𝑪2 = [

𝑐2,1 0 0

0 𝑐2,2 0

0 0 𝑐2,3

] 

The control law (30) can only be implemented when the model parameter matrices 𝑪(𝒙2), 𝑫(𝒙2), 𝒈(𝒙1), 
∆(𝒙1, 𝒙2 ) are well known. However, as seen in [29, 30] the accurate determination of  the matrices and 

vectors 𝑪(𝒙2), 𝑫(𝒙2), 𝒈(𝒙1), ∆(𝒙1, 𝒙2 ) and the measured error of the sensors are very difficult. The article 

collects the uncertain components into an uncertain function vector, which is approximated by the RBF 

neural network. 

The uncertain function vector is expressed as: 

 
𝑭(𝒍) = −(𝑪(𝒙2)𝒙2 + 𝑫(𝒙2 )𝒙2 + 𝒈(𝒙1) + ∆(𝒙1, 𝒙2 )) = [𝑓1(𝒍), 𝑓2(𝒍), 𝑓3(𝒍)]𝑇  

∈ 𝑅3 
(31)  

By employing the RBF NN to approximate the unknown function 𝑓𝑖(𝒍)  ∈ 𝑅, 𝑖 = 1,2,3, 𝑓𝑖(𝒍) can be 

expressed as: 

 𝑓𝑖(𝒍)  = 𝑾𝑖
∗𝑇𝑸(𝒍) + 𝜖𝑖(𝒍)    𝑖 = 1,2,3 (32)  

where 𝑾𝑖
∗  ∈ 𝑅𝑛 denotes the ideal constant weights, |𝜖𝑖(𝒍)| ≤  𝜖𝑖

∗ are NN approximation errors with 

constants 𝜖𝑖
∗ > 0. Due to 𝑾𝑖

∗ is unknown so we let  �̂�𝑖 be the estimate of 𝑊𝑖
∗, �̂�(𝒍) be the estimate of 𝑭(𝒍). 

 �̂�(𝒍) = �̂�𝑇𝑸(𝒍) = [𝑓1(𝑸(𝒍), �̂�1), 𝑓2(𝑸(𝒍), �̂�2), 𝑓3(𝑸(𝒍), �̂�3)]𝑇 (33)  

The (29) can be rewritten as: 

 �̇�2 = 𝑴−1[𝝉 + 𝑭(𝒍) + 𝑴𝑷2𝛌2 − 𝑴�̇�2𝑐] (34)  

 �̇�2 = 𝑴−1[𝝉 + 𝑾∗𝑇𝑸(𝒍) + 𝝐(𝒍) + 𝑴𝑷2𝛌2 − 𝑴�̇�2𝑐] (35)  

where  𝑾∗𝑇𝑸(𝒍) = [𝑾1
∗𝑇𝑸(𝒍), 𝑾2

∗𝑇𝑸(𝒍), 𝑾3
∗𝑇𝑸(𝒍)]𝑇, 𝝐(𝒍) = [𝜖1(𝒍), 𝜖2(𝒍), 𝜖3(𝒍)]𝑇, �̂�𝑇𝑸(𝒍) =

[�̂�1
𝑇𝑸(𝒍), �̂�2

𝑇𝑸(𝒍), �̂�3
𝑇𝑸(𝒍)]𝑇 , the input vector of NN 𝒍 =  [𝒙1

𝑇 , 𝒙2 𝑇 ]𝑇 ∈ 𝑅6. 

The feedback control is expressed as: 

 𝝉(𝑡) = −�̂�(𝒍) − 𝑪2𝒆2 + 𝑴�̇�2𝑐 − 𝑴𝑷2𝝀2 − ∑
𝑧1,𝑖. 𝑱𝑖

𝑇(𝒙2)

𝑘𝑑1,𝑖
2 − 𝑧1,𝑖

2

3

𝑖=1

 (36)  

 𝝉(𝑡) = −�̂�𝑇𝑸(𝒍) − 𝑪2𝒆2 + 𝑴�̇�2𝑐 − 𝑴𝑷2𝝀2 − ∑
𝑧1,𝑖. 𝑱𝑖

𝑇(𝒙2)

𝑘𝑑1,𝑖
2 − 𝑧1,𝑖

2

3

𝑖=1

 (37)  

 Consider the following adaptive law: 

 �̇̂�𝑖 = �̇̃�𝑖 = 𝜞𝑖[𝑸(𝒍)𝑧2𝑖 − �̂�𝑖], 𝑖 = 1,2,3 (38)  

where �̃�𝑖 =  �̂�𝑖 − 𝑾𝑖
∗ , 𝜞𝑖 = 𝜞𝑖

𝑇  are adaptation gain matrices 𝜞𝑖 ∈ 𝑅𝑛×𝑛 và  is a positive design 

parameter. 

Substituting (37) to (35), we have: 

 �̇�2 = 𝑴−1[−�̂�𝑇𝑸(𝒍) − 𝑪2𝒆2 − ∑
𝑧1,𝑖. 𝑱𝑖

𝑇(𝒙2)

𝑘𝑑1,𝑖
2 − 𝑧1,𝑖

2

3

𝑖=1

+ 𝑾∗𝑇𝑸(𝒍) + 𝝐(𝒍)] (39)  

 �̇�2 = 𝑴−1[−𝑪2𝒆2 − ∑
𝑧1,𝑖. 𝑱𝑖

𝑇(𝒙2)

𝑘𝑑1,𝑖
2 − 𝑧1,𝑖

2

3

𝑖=1

− �̃�𝑇𝑸(𝒍) + 𝝐(𝒍)] (40)  

Consider the Lyapunov function as: 
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 𝑉 = 𝑉1 +
1

2
𝒛2

𝑇𝑴𝒛2 +
1

2
∑ �̃�𝑖

𝑇𝜞𝑖
−1�̃�𝑖

3

𝑖=1

 (41)  

The derivative of 𝑉 is: 

 �̇� = �̇�1 + 𝒛2
𝑇𝑴�̇�2 + ∑ �̃�𝑖

𝑇𝜞𝑖
−1�̇̃�𝑖

3

𝑖=1

 (42)  

 

�̇� = ∑ −
𝑐1,𝑖. 𝑧1,𝑖

2

𝑘𝑑1,𝑖
2 − 𝑧1,𝑖

2

3

𝑖=1

+ ∑
𝑧1,𝑖. 𝑱𝒊(𝒙1). 𝒛2

𝑘𝑑1,𝑖
2 − 𝑧1,𝑖

2

3

𝑖=1

+ 𝑧2̅
𝑇𝑴𝑴−1[−𝑪2𝒆2 − ∑

𝑧1,𝑖. 𝑱𝑖
𝑇(𝒙2)

𝑘𝑑1,𝑖
2 − 𝑧1,𝑖

2

3

𝑖=1

− �̃�𝑇𝑸(𝒍) + 𝝐(𝒍)] + ∑ �̃�𝑖
𝑇𝜞𝑖

−1�̇̃�𝑖

3

𝑖=1

 

(43)  

 

�̇� = ∑ −
𝑐1,𝑖. 𝑧1,𝑖

2

𝑘𝑑1,𝑖
2 − 𝑧1,𝑖

2

3

𝑖=1

+ ∑
𝑧1,𝑖. 𝑱𝒊(𝒙1). 𝒛2

𝑘𝑑1,𝑖
2 − 𝑧1,𝑖

2

3

𝑖=1

− 𝒛2
𝑇𝑪2𝒆2 − ∑

𝑧1,𝑖. 𝑱𝒊(𝒙1). 𝒛2

𝑘𝑑1,𝑖
2 − 𝑧1,𝑖

2

3

𝑖=1

− ∑ �̃�𝑖
𝑇𝑸(𝒍)𝑧2,𝑖

3

𝑖=1

+ 𝑧2̅
𝑇𝝐(𝒍) + ∑ �̃�𝑖

𝑇𝜞𝑖
−1𝜞𝑖[𝑸(𝒍)𝑧2𝑖 − �̂�𝑖]

3

𝑖=1

 

(44)  

 �̇� = ∑ −
𝑐1,𝑖. 𝑧1,𝑖

2

𝑘𝑑1,𝑖
2 − 𝑧1,𝑖

2

3

𝑖=1

− 𝒛2
𝑇𝑪2𝒆2 + 𝒛2

𝑇𝝐(𝒍) − ∑ �̃�𝑖
𝑇�̂�𝑖

3

𝑖=1

 (45)  

By using Young’s inequality: 

 𝒛2
𝑇𝝐 ≤ 𝒛2

𝑇𝒛2 +
1

4
𝝐𝑇𝝐 ≤ 𝒛2

𝑇𝒛2 +
1

4
𝝐∗𝑇𝝐∗ (46)  

Therewith, we have: 

 2�̃�𝑖
𝑇�̂�𝑖 ≥ ‖�̃�𝑖‖

2
− ‖𝑾𝑖

∗‖2 (47)  

Then, we have the following inequality: 

�̇� ≤ ∑ −
𝑐1,𝑖. 𝑧1,𝑖

2

𝑘𝑑1,𝑖
2 − 𝑧1,𝑖

2

3

𝑖=1

− 𝒛2
𝑇(𝑪2 − 𝐼)𝒛2 −

𝜎

2
∑ (‖�̃�𝑖‖

2
− ‖𝑾𝑖

∗‖2)

3

𝑖=1

+
1

4
𝝐∗𝑇𝝐∗ (48)  

Choose: 

𝑪1 = 𝑲0 

𝑪2 = 𝑲0/2 + 𝐼 

where 𝑲0 is a positive definite matrix, 𝑲0 = [𝑘01  0   0; 0  𝑘02   0; 0   0   𝑘03] 

 �̇� ≤ − ∑
𝑘0𝑖. 𝑧1,𝑖

2

𝑘𝑑1,𝑖
2 − 𝑧1,𝑖

2

3

𝑖=1

−
1

2
𝒛2

𝑇𝑲0𝒛2 −
𝜎

2
∑‖�̃�𝑖‖

2
3

𝑖=1

+ (
1

4
𝝐∗𝑇𝝐∗ +

𝜎

2
∑‖𝑾𝑖

∗‖2

3

𝑖=1

 ) (49)  

According to Lemma 1, we have:   

     −
𝑘0𝑖.𝑧1,𝑖

2

𝑘𝑑1,𝑖
2 −𝑧1,𝑖

2 ≤ −𝑘0𝑖 log
𝑘𝑑1,𝑖

2

𝑘𝑑1,𝑖
2 −𝑧1,𝑖

2   

The (49) can be rewritten as:  

 

�̇� ≤ − ∑ 𝑘0𝑖 log
𝑘𝑑1,𝑖

2

𝑘𝑑1,𝑖
2 − 𝑧1,𝑖

2

3

𝑖=1

−
1

2
𝒛2

𝑇𝑲0𝒛2 −
𝜎

2𝜆𝑚𝑎𝑥(Γ𝑖
−1)

∑ �̃�𝑖
𝑇Γ𝑖

−1�̃�𝑖

3

𝑖=1

+ (
1

4
𝝐∗𝑇𝝐∗ +

𝜎

2
∑‖𝑾𝑖

∗‖2

3

𝑖=1

 ) 

(50)  

Choose 𝜎 so that: 

        𝑘0 = 𝜆𝑚𝑖𝑛(𝑲0) 
𝜎

𝜆𝑚𝑎𝑥(Γ𝑖
−1)

= 𝑘0 

⇒ �̇� ≤ −𝑘0𝑉 + 𝑏 (51)  
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where 𝑏 =
1

4
𝝐∗𝑇𝝐∗ +

𝜎

2
∑ ‖𝑾𝑖

∗‖23
𝑖=1   

According to (51), we can get:  

 𝑉(𝑡) ≤ 𝑉(0)𝑒−𝑎𝑡 +
𝑏

𝑘0
(1 − 𝑒−𝑎𝑡) (52)  

So, the following inequality holds: 

 
1

2
log

𝑘𝑑1,𝑖
2

𝑘𝑑1,𝑖
2 − 𝑧1,𝑖

2 ≤ 𝑉(𝑡) ≤ 𝑉(0)𝑒−𝑎𝑡 +
𝑏

𝑘0
(1 − 𝑒−𝑎𝑡) (53)  

 

 
𝑘𝑑1,𝑖

2

𝑘𝑑1,𝑖
2 −𝑧1,𝑖

2 ≤ 𝑒
2(𝑉(0)−

𝑏

𝑘0
)𝑒−𝑎𝑡+2

𝑏

𝑘0  (54) 

 𝑘𝑑1,𝑖
2 ≤ (𝑒

2(𝑉(0)−
𝑏

𝑘0
)𝑒−𝑎𝑡+2

𝑏
𝑘0)(𝑘𝑑1,𝑖

2 − 𝑧1,𝑖
2 ) (55) 

 
|𝑧1,𝑖(𝑡)| ≤ 𝑘𝑑1,𝑖

√1 − 𝑒
−2(𝑉(0)−

𝑏

𝑘0
)𝑒−𝑎𝑡−2

𝑏

𝑘0 < 𝑘𝑑1,𝑖    
(56)  

 

3.2 Stability Analysis 

The main result of this brief: Consider the surface ship (7) with Assumptions 1 and 2 for initial conditions 

starting  under the virtual controller (22), the adaptive law (38) and the actual controller (37), then the 

system has the following properties: 

1) All the closed-loop state signals are bounded 

2) The output tracking error 𝒚(𝑡) − 𝒚𝑑(𝑡) can be adjusted around the origin with an arbitrarily small 

neighborhood. 

Proof: 

1) From the inequality (51) results in ultimately uniformly bounded stabilization of 𝒛1, 𝒛2, �̃�𝑖 and 

since 𝑏 is arbitrary, the boundedness of these states can be made arbitrarily small.  

The expression (56) shows that the value of 𝒛1 is bounded 〈𝒛1〉 < 𝒌𝑑1, the constrained value of 

compensated tracking error is never violated. When increasing the value of 𝑘0 and decreasing the value of 

b (by decreasing 𝜎), the bounded of 𝑧1,𝑖 will be smaller, results in smaller output tracking error (𝒚(𝑡) −
𝒚𝑑(𝑡)). 

Based on (18) and the boundedness of 𝝃1 , we can deduce that 〈𝒆1〉 < 𝒌𝑑1 + 〈𝝃1〉 is bounded. Due to the 

physical characteristics of the actuator, 𝝉 are saturated signals so according to Lemma 4, 𝝀1, 𝝀1 are bounded. 

From (15), Assumption 2 and Lemma 4, we know that 〈𝒙1〉 < 𝒌𝑑1 + 〈𝝃1〉 + 𝒌𝑐 + 〈𝝀1〉 ≤ 𝒌𝑎1. According 

to Assumption 1 and equation (22), the virtual control signal vector includes functions of bounded signals 

𝒆1, �̇�𝑑 , 𝝀1 , so 𝜶1 is a bounded vector. Similarly, from equation (18) we have 𝒆2 = 𝒛2, so 𝒆2 is a bounded 

vector. Because of the command filter error satisfying 〈(𝒙2𝑐 − 𝜶1)〉 < 𝜷, the output signal 𝒙2𝑐 of the filter 

is also bounded. So 𝒙2 ≤ 〈𝒆2〉 + 〈𝛌2〉 + 〈𝒙2𝑐〉 ≤ 𝒌𝑎1, is a bounded vector. Due to �̃�𝑖 are bounded so �̂�𝑖 =
�̃�𝑖 + 𝑾𝑖

∗ are bounded. From (37), it can be concluded that the feedback control laws are also bounded 

since 𝑸(𝒍) are bounded for all values of the NN input 𝒍. Therefore, all the signals in the closed-loop system 

remain bounded. 

2) According to Eq (15), (18) the output tracking error can be represented as 𝒚 − 𝒚𝑑 = 𝒙1 − 𝒙𝑑(𝑡) =
𝒆1 + 𝛌1 = 𝒛1 + 𝝃1 + 𝛌1 ≤ 〈𝒛1〉 + 〈𝝃1〉 + 〈𝝀1〉. By choosing the appropriate design parameters as 

𝑘0, 𝜎, 𝑷1, 𝑷2, the output tracking errors can be adjusted around the origin with arbitrarily small 

neighborhoods. 

4 SIMULATION 

To demonstrate the effectiveness of the proposed control design, we perform a numerical simulation on the 

system (7). The model used for simulation is the Cybership II, which is a 1:70 scale supply vessel replica 

built in a marine control laboratory in the Norwegian University of Science and Technology [30]. 

The known inertia matrix parameters of ship [30] are given by:  

𝑀 = [25.800 0 0; 0 25.6612 1.0948; 0 1.0948 2.7600] 
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The initial states: 𝜂(0) = [[0.02; 1; 0.02]]𝑇, (0) = [0.2,0,0]𝑇, 𝜂𝑑(0) = [0,1,0]𝑇. The reference 

trajectory:  𝜂𝑑 = [sin(𝑡), cos(𝑡), sin(𝑡)]𝑇. 

We construct the Gaussian RBF NN �̂�𝑖
𝑇𝑸(𝒍) using 6400 nodes, with the centers evenly spaced on [-3.8, 

3.8]x[-3.8, 3.8]x[-3, 3] and the width ϛ𝑖 = 0.8 , 𝑖 = 1, 2, 3. The designed parameters are 𝑲0 = [24 0 0;0 24 

0;0 0 16]; 𝜞1 = 10, 𝜞2 = 10, 𝜞3 = 3. The initial weights of the neural network are set as: �̂�1 = �̂�2 =
�̂�3 = 0 

The other parameters are designed as follows: 𝜔𝑛 = [35 0 0;0 35 0;0 0 80]; 𝜁 = 1; 𝑃1 = [1.4 0 0;0 1.4 0;0 0 

3]; 𝑃2 = [8 0 0;0 10 0;0 0 8]; 𝑘𝑑1=0.05; 𝑘𝑑2=0.05; 𝑘𝑑3=0.05; delay time 𝑡𝑑 = 50 ×  𝑠𝑎𝑚𝑝𝑙𝑒 𝑐𝑦𝑐𝑙𝑒 ; 

𝑠𝑎𝑚𝑝𝑙𝑒 𝑐𝑦𝑐𝑙𝑒 = 0.002(𝑠) 
Two cases are simulated to evaluate the impact of the auxiliary system when the system has an input delay. 

The first, when the adaptive neural system is equipped only command filter without an auxiliary system 

(ACF), the input signal has no delay, the system is stable, without violating the compensated tracking error 

constraints. In this case, when the input signal is delayed, the system becomes unstable. The second, when 

the system is equipped both command filter and auxiliary system (AACF), the system remains stable when 

there is an input delay. 

Figure 3 shows that when the AACF system has an input delay, the system is still stable and can track the 

reference trajectory with precision in similar to the ACF system in Figure 2. However in Figure 5, we can 

see that the output tracking error of the AACF system fluctuates more than the output tracking error of the 

ACF system in Figure 4, but after a very small initial period of time, the output tracking error is only within 

±0.05[m][rad].  

Figure 7 shows that the control input signals of the AACF system in an initial small period of time (0.1s) 

fluctuate larger than the control signals of the ACF system, and then, these control signals are the same as 

to the control signals of the ACF system. 

Figure 9 shows that compensated tracking errors of the AACF system fluctuate more than compensated 

tracking errors of the ACF system in Figure 8 but do not violate the constraint. 

 

 
 

 

 

 

 

Figure 2. tracking trajectory of the ACF system 

 

 
 

 

 

     

 

 

Figure 3. tracking trajectory of the AACF system 
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Figure 4. output tracking errors of the ACF system 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. output tracking errors of the AACF 

system 

 

 
 

 
 

 

 

 
 

 

 

 

 

Figure 7. control inputs of the ACF system 

 

 

 

 

 

Figure 6. control inputs of the AACF system 
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5 CONCLUSION 

In this paper, an adaptive neural controller based on a command filter is used for the trajectory tracking 

problem of surface ship in the presence of state constraints and delay of the input signal. The constraints of 

compensated tracking errors are dealt with by suitable barrier Lyapunov functions. The influence of input 

delay on the control system is rejected by the auxiliary system. The command filter-based backstepping 

control method is utilized to reduce the computational burden, avoiding complexity explosion. With the 

proposed approach, we proved that the system is stable, the output signals track the desired trajectories with 

the output tracking errors converge to the neighborhood of zero, and the constraints of the compensated 

tracking error are not violated. Simulations verified the tracking performance of the proposed method.  
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ĐIỀU KHIỂN BÁM NƠ-RON THÍCH NGHI CHO TÀU BỀ MẶT CÓ RÀNG 

BUỘC TRẠNG THÁI VÀ ĐẦU VÀO CÓ TRỄ DỰA TRÊN BỘ LỌC LỆNH 
 

HOÀNG THỊ TÚ UYÊN* 

Khoa Công nghệ Điện, Trường Đại học Công nghiệp Thành phố Hồ Chí Minh 

hoangthituuyen@iuh.edu.vn 

Tóm tắt. Bài báo đề xuất thuật toán cho bài toán bám quỹ đạo của tàu bề mặt đủ cơ cấu chấp hành có yêu 

cầu ràng buộc trạng thái, sự trễ của tín hiệu đầu vào và thông số mô hình bất định. Trong quá trình thiết kế, 

mạng nơ-ron hướng tâm được sử dụng để xấp xỉ những thành phần bất định phi tuyến, hàm barrier 

Lyapunov đối xứng được sử dụng để khắc phục ràng buộc về sai số bám đã được bù. Đặc biệt bài báo sử 

dụng hệ thống phụ để loại bỏ ảnh hưởng trễ của tín hiệu đầu vào khi mà tín hiệu này có thể làm đặc tính 

bám của hệ thống xấu đi, thậm trí làm hệ thống mất ổn định. Bộ điều khiển thích nghi mà bài báo đề xuất 

được xây dựng dựa trên phương pháp backstepping có sự dụng bộ lọc lệnh nhằm tránh sự bùng nổ đạo hàm 

và giảm bớt gánh nặng tính toán cho bộ điều khiển. Ngoài ra, sai số do bộ lọc lệnh gây ra sẽ được bù để cải 

thiện đặc tính bám. Bài báo sẽ chứng minh, bộ điều khiển đề xuất có sai số bám hội tụ tới lân cận điểm 

không, những ràng buộc về sai số bám đã được bù của hệ thống không bị vi phạm, hệ thống vẫn ổn định 

khi tín hiệu đầu vào có trễ. 

Từ khóa. Điều khiển bám nơ-ron thích nghi, Mạng nơ-ron hàm hướng tâm, Hệ thống phụ, Kỹ thuật 

backstepping có sử dụng bộ lọc lệnh, Hàm Lyapunov Barrier. 
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