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Abstract. This research introduces a novel method for roller bearing fault diagnosis based on the Least
Squares Support Vector Machine (LSSVM) with parameters optimized using the Differential Evolution
(DE) algorithm, referred to as DE-LSSVM. Initially, the Multivariate Variational Mode Decomposition
(MVMD) method decomposes the acceleration vibration signals from roller bearings into component
functions. Subsequently, these functions extract initial feature matrices using the root mean square (RMS)
method. Finally, these values serve as input vectors for the DE-LSSVM classifier. Experimental results
illustrate that the proposed method exhibits lower test error rates and reduced computational time when
compared to other methods using the same collected data.
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evolution; least square support vector machine.

1 INTRODUCTION

The roller bearing is an interposed element between the stationary part and the rotating part. A roller
bearing failure can lead to a terrible failure, so roller bearing failure diagnosis plays a key role in
guaranteeing continued system operation. Therefore, the diagnosis of roller bearing faults is the focus of
this paper. Roller bearing failure diagnosis consists of three stages: data collection, feature extraction, and
pattern recognition, of which these latter two stages play a significant role. When a bearing failure appears,
fault characteristic information extraction is strenuous because of non-stationary feature of the roller
bearing vibration signal. Feature extraction includes signal decompositions and feature extraction. The
signal decomposition methods consist of Empirical Mode Decomposition (EMD) [1], Local Mean
Decomposition (LMD)[2], Local-scale Characteristic Decomposition (LCD)[3]. In general, these methods
decompose a vibration signal into the sum of component and residual signals. However, these methods
suffer from drawbacks, including end effects and mode mixing during the sifting process, rendering them
inefficient for roller bearing vibration signals. Recently, Naveed Ur Rehman et al. proposed the method to
decompose the signal, namely Multivariate Variational Model Decomposition (MVMD)[4]. This method
overcomes the shortcomings of the EMD, LMD, and LCD methods and gives high efficiency. MVMD
utilize for denoising, blink removal from EEG signal, multi-fault diagnosis [5-8].

The component signals are feature extracted to form feature matrices using the methods of frequency
ratio analysis [9], energy entropy [10], single value decomposition method (SVD) [11] and autoregressive
(AR) model [12]. The feature extraction stage aims to reduce the input matrix size for the patten recognition
step. In this paper, the root mean square (RMS) is used to extract features of the roller bearing signal.

Pattern recognition methods include using discriminable predictive model class discrimination
(VPMCD) [13], k-nearest neighbor[14], hidden Markov model[15], artificial neural networks (ANNS) [16]
and support vector machines (SVM) [17]. The disadvantage of VPMCD is difficult to set the variable
parameters of a model. The disadvantage of the k-nearest neighbor method is computationally expensive
and lazy learning. Hidden Markov models do not explicitly catch the time in a specified state due to their
Markovian behavior. The support vector machine method has more advantages than ANN, meaning it has
high generalizability with few numbers of training samples. This is very suitable when dealing with
technical problems, but it is awfully expensive to collect large numbers of samples. LSSVM proposed by
Suyken [11] is a modified version of SVM to reduce the computational workload. Using the LSSVM in the
process of training, a least squares error function is recommended to obtain a linear set of equations in dual
space. Thus, the data training problem is reduced to just solving a set of linear equations instead of
guadratics like in SVM. LSSVM shows performance in prediction accuracy, fast computation, and high
classification. However, the challenge for LSSVM users is the selection of the parameters of this model.
The parameters of this model include the penalty factor and Kernel parameter. Usually, the selection of
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these parameters is based on heuristic search algorithms. Heuristic algorithms are often used to select and
search for parameters for LSSVM, such as Genetic Algorithm (GA)[18], Differential Evolution algorithm
(DE)[19], Particle Swarm Optimization (PSO)[20]. Differential Evolution algorithm showed outstanding
advantages in solving optimization problems when compared with GA and PSO algorithms. In there, we
propose using the DE algorithm as a tool for optimal parameters selection for the LSSVM classifier.

In this paper, we use MVMD method combined with RMS operator for feature extraction and DE-
LSSVM classifier for fault identification. Firstly, the MVMD method decayed the bearing acceleration
vibration signals into component functions. Then these component functions are extracted into a feature
matrix by the RMS operator. The feature matrices are used as the input matrix for the LSSVM classifier.
The parameters of the LSSVM set are optimized by the DE to generate the DE-LSSVM classifier. The
experimental results showed the DE-LSSVM classifier gave lower test error results and shorter time when
are compared with the GA-LSSVM and PSO-LSSVM classifiers with the same input data. The paper is
arranged as follows: Section 1 shows MVMD method and RMS, Section 2 presents DE Algorithm, Section
3 presents optimization of LSSVM parameters based on DE. Section 4 presents the application of DE-
LSSVM to diagnose bearing failure and the experimental process along with the results presented in section
5. Section 6 presents the conclusion of the paper.

2 MVMD-RMS

2.1 Multivariate Variational Mode Decomposition (MVMD)

The MVMD method is an adaptive orthogonal signal decomposition method for the multivariable or
multichannel data set [4]. It is the extension of the VMD [21] algorithm and is a powerful method for
sampling and anti-interference. The main idea of MVVMD is to take out assume K quantity of multivariable
modulation vibrations u(t) from the input data x(t) containing N data channels, that is, X(t) = [x1(t), x2(%), . . .
xn (1]

x(t) = TR we (©) 1)
where uk(t)={us(t), uz (t),..., Uk}
The fitness function of MVMD becomes the multivariate expansion of the fitness function used in the
corresponding VMD optimization problem and is showed by equation:

. 2
g =2 [[oc[e7rur ]I (2
in which uy (t) is theanalytic signal corresponding to u(t), e is a single frequency component and is used
in the harmonic mixing of the whole vector uy (t).
This function g can be represented as follows:

* —7 2
9 =X Zl0c[ur e, (3)
in which uy, , (t) includes channel number n and mode number k.
The problem of MVMD can be presented:

min {Z Z||at[u;,n(t)e‘jwkt]||§ }

{wrn}lwr}

(4)
S.t.XN uk’n(t),n = 1,2,...,N
2
The Lagrange multiplier method and the quadratic penalty method are included in Eq.4 to transform the

constrained variable problem into the unconstrained variable problem. The Lagrange parameter L is
represented as follows:

; . 2
L({ugn) (i 2n) = @ 2y Ty [0 (8@ + Z) # uicn@ ] e/t || 4+ B0 | (®) = ey wen O +
n=1{A(8), x(8) — X1 wic ()
®)
where, a is the balancing parameter of the ‘‘data-fidelity’” constraint.
Details of the MVVMD method are presented in [4]. The number of component functions uj,(t) determines

the signal decay time and the classification time of the LSSVM classifier. The larger the number of
component functions, the higher the computational time cost. In this paper, we choose the number of
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component functions to be 4 because important information is often contained in the first components. After
decomposing the bearing acceleration vibration signal into component functions, in the next step, these
component functions are extracted into characteristic matrices by the root mean square operator.

2.2 Root Mean Square

The signal x(t) has been decomposed with MVMD into n uk. If n ux achieves by using the MVMD method
to divide the roller bearing oscillation signal, it will make RMS of the n ux to become
[RMS1,RMS;, . . . ,RMS;] equivalent. As the {ui(t),u2(?), ...,un(t)} include different frequency components,
2={Z1,Z5,...,Zy}, forms an amplitude distribution in the frequency domain of roller bearing vibration signal,
and then the corresponding MVMD RMS is designated as

Root Mean Square RMS = /% =1 [ul? (6)

Fig. 1 (a), (b), (c), and (d) show the roller bearing acceleration vibration signals with 4 conditions: Normal,
inner-race fault, out-race fault, and ball fault, respectively. Table 1 shows that RMS of each roller bearing
vibration signal is different because of the uncertain amplitude distribution and frequency range. Therefore,
the LSSVM classifier will be effective in identifying roller bearing conditions based on these RMS values.
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Figure 1: The vibration acceleration signals of the normal
(a), inner-race fault (b), outer-race fault (c), and ball fault roller bearing (d)

Table 1: The MVMD Root Mean Square of the vibration signals of the roller bearing with different faults.

Inner-race fault Out-race fault Ball fault Normal
(x10%) (x10%) (x10%) (x10%)
21.40 16.53 18.61 27.66

3 DIFFERENTIAL EVOLUTION (DE)

The DE is a heuristic search algorithm that includes 3 basic genetic operators: mutation, crossover, and
selection to produce test individuals. The DE algorithm consists of six steps as follows[22]: (i) Problem
definition and algorithm parameters; (ii) Initialization; (iii) Mutation; (iv) Crossover; (v) Selection ; (Vi)
End. The procedure of the DE algorithm is shown in Fig. 2.
Problem definition and algorithm parameters:

min f (x) ()
subject to x; € R; = [l;,w;],i = 1,2,...N

where f(x) is a fitness function, x =(x1,X2, ...,xn) is the vector of decision variables, Ri is the range of feasible
values for the i-th decision variable, and N is the number of decision variables, |; and u; are the lower and
upper bounds of the i-th decision variable, respectively;
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Figure 2: Flowchart of DE algorithm

4 DE BASED LSSVM PARAMETERS OPTIMIZATION

4.1 Least square support vector machine (LSSVM)

Suykens et al. proposed LSSVM to reduce the computationally assigned work of SVM by using equality
constraints [23]. This method figures out the solution for convex optimization problems with fine
abstraction ability for the optimal separate hyperplane. Suppose {(xi, yi)|i=1,2,...,1} as the training set of
sample numbers is I. The sample of xi , i=1,2,...,] corresponds to one output yi € (-1,1), the objective
function and constraint condition are shown as follows:

. 1 1
min J(w,e) = EWTW + EYZLl e?

s.t.ywolx)+b)=1-¢, i={12,..,0
where, e; are slack variables and y > 0 is a penalty factor.
The training results are decided by values selection of y. Therefore, it is important to search for the optimal
value for y. This parameter should be modified conscientiously. The Lagrange function can be defined:
Lw,b,ea) = ‘W w+t - Yzl ref = Yicia{y(who(x) +b) — 1+ ¢ ©))
where, the a; values are the Lagrange multipliers, which can be positive or negative. The optimal condition
IS as follows

6L JL
=05 0 =0; 5= =0 (10)

The matrix equatlon can be obtained as follows:

[Y Q+]H_H (11)

where =y, ¥2 oy I is unit matrix; T=[1;1;..;1]; a=[a,ap..,q]; Q=
yl-yj<pT(xl-)qo(xj) = y;¥;K (i, x;); K(x;, x;) is Kernel function of SVM; i, j=1,2,...N.
The LSSVM classifier in the dual space can be obtained as follows:
f(x) = sgn[Xi a;yiK (x,x;) + b] (12)
The Gauss radial basic function (RBF) is used to increase LSSVM performance and generalization, as
represented as follows:

112
K(x,x;) = exp (%) (13)
where o is a Kernel parameter.
Summary, the parameter pairs (y, o) affect the classification efficiency of LSSVM. The proper selection of
these two parameters will impact on LSSVM learning performance. Therefore, the DE algorithm is utilized
to optimize these parameters to achieve high classification accuracy.

4.2 Parameters optimization of LSSVM based on DE

As mentioned in previous studies [12,13], LSSVM parameters strongly influence the classifier
performance. The selection of optimal parameters for LSSVM is mainly based on user experience. In here,
we propose to use DE algorithm to find the LSSVM optimal parameters.

(8)

The parameter pairs (y, o) are considered as optimization variables, while the test error is a suitable
measure of the optimization problem. In here, the objective function is the test error of the LSSVM and is
represented as follows:

G(y,0) = Testerrorpssym (v, 0) (14)
where G(y, o) is a fitness function and Testg, oy ¢o, (v, 0) is define:
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Number of incorrect classification in validation samples
TeStErrorLSSVM = Toj;al number of sa{nples invalidation set . (15)

In general, the DE was integrated into the LSSVM training procedure to obtain the optimal parameters
for minimizing the test error and generalization capability of the LSSVMs. In the first generation, each
individual is randomly obtained. Normally, the LSSVM algorithm calculates the corresponding output
weights matrix for each individual. Then, DE can be applied to find the fitness measurement for each
individual in the population. This process was repeated until the stopping condition was satisfied. When
the evolution is finished, the optimal parameters of the LSSVM are ready to conduct the classification. The
procedure of DE-LSSVM algorithm is shown as follows (Fig.3):

DE l———————————

Y

LSSVM parameters (y, o)

v

Training LSSVM Model

Y

Calculating the fitness function

Y

Is the stopping condition satisfied?

Optimal LSSVM parameters obtained

Figure 3: The parameter optimization flowchart of LSSVM based on DE

4.2.1 Parameters analysis of SVM

To analyze the influence of parameters on the generalization performance of SVM, we take the RBF
kernel as an example and plot the test error surfaces, test error boundaries with gamma and sigma
parameters ranging from 0 to 1000 on the dataset.

The test error boundary is indicated on the right of Fig.4, where the x-axis and y-axis represent y and o,
respectively. Meanwhile, the test error surfaces are displayed on the left, with the x-axis and y-axis
representing y and o, respectively. Each grid node in the (x, y) plane of the test error is an abbreviation for
a parameter combination, and the z-axis represents the test error value obtained for each parameter
combination. Because there are multiple local minima in these test error plots, finding the optimal parameter
combination is not straightforward. The test error is lower in one region and significantly higher on both
sides of the lower region. This makes it convenient for us to use an optimization procedure to achieve the
optimal parameters for the SVM. Figure 4 has many local optimal points, so this article uses DE to solve
the global optimization problem for SVM.

4.2.2 Parameter setting for algorithms
Parameters of the DE algorithm were configured as follows: Population Size (NP): 20; Mutation Scale
Factor (F): F=0.4 + (1 - 0.4) * rand; Crossover Probability (CR): 0.9; Maximum Number of Generations
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(Max_Gen): 100; Termination Criteria: 10°°; Crossover Method: rand/1.
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Figure 4: Test error surface and contour with parameters on dataset
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Figure 5: Investigate the convergence of the algorithms
Parameters of the PSO algorithm were fixed with the values given in the Ref. [24, 25]; that is, W
=0.75, c1 = ¢ = 1.5, the numbers of particles was 20, and the iteration count was 100. Parameters of the
GA algorithm were configured as follows: Population Size (NP): 20; Maximum Number of Generations
(Max_Gen): 100; Termination Criteria: 10°°.

5 APPLICATION OF DE-LSSVM TO ROLLER BEARING FAULT DIANOSIS

5.1 Data Acquisition

The data for this paper is provided by the Case Western Reserve University Bearings Data Center
Website (CWRUBDCW) with permission from Professor Loparo [26] (Fig.6). The test stand included a 2
hp Reliance Electric motor, a torque transducer/encoder, a dynamometer, and control electronics. The
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sample frequency was 485063 Hz and the motor speed was 1797 rpm. The deep groove ball bearing
manufactured by SKF was used in this test stand. The type of roller bearing is 6205-2RS JEM. The test
bearings of electro-discharge machining with fault diameters of 0.007 inches were selected. The roller
bearings with the four conditions (normal (NOR), inner-race fault (IRF), outer-race fault (ORF), and ball
fault (BF)) include 432 samples. The number of collection samples is divided into 3 parts, one part for
testing and 2 parts for training and valiation. Table 2 shows collection of vibration signal samples.

Figure 6: Roller béa?ing vibration data collection model, extracted from [26]
Table 2: Collection of vibration signal samples

Roller bearing conditions Class Collection samples | Training samples | Test samples
Inner-race fault (IRF) 1 108 72 36
Outer-race fault (ORF) 2 108 72 36
Ball fault (BF) 3 108 72 36
Normal (NOR) 4 108 72 36

5.2 Application

From the above analysis, we can see the MVMD-RMS of the roller bearing vibration signals with
different operating conditions and failure modes are distinctly different. In this paper, the fault characteristic
of each u is adopted as DE-LSSVM input vector. It can effectively determine the working condition and
fault patterns of the bearing. The flow chart of the roller bearing fault diagnosis method based on MVMD-
RMS and DE-LSSVM is shown in Fig. 7. The steps to conduct the experiment are as follows:

(1) Use the MVMD to decompose the roller bearing vibration signals into a number of component
functions uy . Because the main information of the fault roller bearing was mainly included in the
first four components, the first four components ux were selected to form the initial feature vector
matrix.

(2) Calculate the RMS; of the component functions ux by using Eq. (6);

(3) Build feature vector Z with the RMS as element, namely MVMD-RMS vector
Y Z = [RMS,,RMS,, ..., RMS,, ] (16)

(4) Divide the feature vector data into three groups: the training, the validation, and the testing
groups with a 60%, 20%, and 20% distribution, respectively.

(5) Evaluate the similarity of data by calculating the max min value.

(6) Train and validate the DE-LSSVM classification model to classify the actual roller bearing fault
conditions. After this process, the optimal parameters of DE-LSSVM are y and &, which are used
to test the samples. A set of DE-LSSVM(i) i=1,2,3,4 are constructed to identify bearing conditions
IRF, ORF, BF and NOR listed in Table 3. In order to define the condition of roller bearing, DE-
LSSVM1 was first used to separate the IRF condition from another condition by setting these
conditions as y = +1 and the other conditions as y = —1. Second, DE-LSSVM, was used to separate
the ORF condition from other conditions by setting outer-race fault as y = +1 and the other
conditions as y = —1. Third, DE-LSSVM3 was used to separate the BF condition from other
condition by setting BF as y = +1 and the other conditions as y = —1. Because the data set had only
got four conditions that needed to be identified, the rest was NOR condition.
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6 RESULT AND DISCUSION

Table 4 indicates that the dataset exhibits similar values for the training, validation, and test sets, with
Xi representing the dataset. Consequently, strong training and validation outcomes can be expected to yield
favorable test results.

Fig. 4 demonstrates that the convergence speed of DE is superior to that of PSO or GA. DE reached a
validation error value of 1.1363 in the 10" generation, whereas PSO attained the same value in the 35"
generation. GA, on the other hand, reached a validation error value of 6.8182 in the 8" generation.

Table 3 : Classifier DE-LSSVM model

Classifier model Roller bearing condition

IRF ORF BF NOR
DE-LSSVM; (+1) (-1) (-1) (-1)
DE-LSSVM; (1) (+1) (-1 (-1)
DE-LSSVM;3 (1) (-1) (+1) (-1)
DE-LSSVM, (-1) (-1) (-1) (+1)

DE -
Roller Bearing +

Vibration Signals

LSSVM parameters (y, o)

Training

Data +

Training LSSVM Model

v
MVMD
Validation Calculating the fitness function
Data
RMS Is stop condition satisfied ?

Optimal LSSVM parameters obtained

Y

P DE-LSSVM

v

Roller Bearing
Fault Detection

Testing
Data

Figure 7: Roller bearing fault detection method based on MVMD-RMS and DE-LSSVM

The results of classification are presented in Table 5. To ensure a fair performance evaluation
comparison, we have compared the proposed method with PSO-LSSVM and GA-LSSVM. Subsequently,
DE-LSSVM was utilized to identify various patterns. The classification results of the validation samples
based on MVVMD preprocessing can be found in Table 6, and they are compared with those obtained using
PSO-LSSVM and GA-LSSVM classifiers. Table 6 also includes the optimal parameters for the classifiers
of the three methods.

The y and ¢ values of each classifier are presented in Table 6, in which the classification results of the
proposed method give an error equal to PSO-LSSVM and lower than GA-LSSVM with the validation data
set. However, as shown in Fig.5, the convergence speed of DE-LSSVM is faster than PSO, so it gives better
classification results in the test data set. The classification results in the test set are presented in Table 7. At
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the same time, the program running time of the MVMD-RMS-DE-LSSVM method is shorter than the
MVMD-RMS-PSO-LSSVM and MVMD-RMS methods -GA-LSSVM.
Table 4; Evaluate the similarity of the data.

Class X1 X2 X3 X4
Group Min Max Min Max Min Max Min Max
Train 0,018958 | 0,02297 | 0,08562 | 0,093926 | 0,131234 | 0,150696 | 0,132914 | 0,175929
1 Validate | 0,018753 | 0,021577 | 0,08467 | 0,095441 | 0,132929 | 0,151107 | 0,134901 | 0,160531
Test 0,018347 | 0,021681 | 0,085316 | 0,094438 | 0,136541 | 0,151989 | 0,138503 | 0,160235
Train 0,013713 | 0,019971 | 0,017538 | 0,094156 | 0,091671 | 0,200456 | 0,073445 | 0,167629
2 Validate | 0,01426 | 0,018398 | 0,018203 | 0,092711 | 0,098826 | 0,175419 | 0,070551 | 0,148737
Test 0,014137 | 0,018452 | 0,01822 | 0,086627 | 0,100457 | 0,189511 | 0,083109 | 0,137662
Train 0,013093 | 0,018984 | 0,018052 | 0,022713 | 0,045982 | 0,094449 | 0,068838 | 0,121215
3 Validate | 0,013448 | 0,020102 | 0,017858 | 0,022344 | 0,046407 | 0,095181 | 0,074325 | 0,108941
Test 0,013065 | 0,018696 | 0,01855 | 0,021636 | 0,045447 | 0,084691 | 0,072277 | 0,112296
Train 0,016944 | 0,036421 | 0,047963 | 0,064346 | 0,014935 | 0,017217 | 0,000905 | 0,028515
4 Validate | 0,019665 | 0,034381 | 0,051281 | 0,06075 | 0,015266 | 0,016644 | 0,001642 | 0,027754
Test 0,019928 | 0,030895 | 0,042808 | 0,061649 | 0,015223 | 0,016655 | 0,001376 | 0,034011
Table 5: Classification results of MVMD-RMS and DE-LSSVM method
DE - DE - DE - e
Test MVMD- | MVMD- | MVMD-| mvMD- SVM1 SVM2 SVM3 Identification
samples RMS1 | RMS2 RMS3 | RMms 4 o o oo results
classifier | classifier | classifier
(1) IRF 0.0214 0.0882 0.1445 0.1519 (+1) Inner-race fault
(2) IRF 0.0208 0.0927 0.1415 0.1469 (+1) Inner-race fault
(3) IRF 0.0200 0.0889 0.1387 0.1385 (+1) Inner-race fault
(4) IRF 0.0230 0.0877 0.1385 0.1360 (+1) Inner-race fault
(5) IRF 0.0219 0.0888 0.1479 0.1513 (+1) Inner-race fault
(6) ORF 0.0178 0.0188 0.1575 0.1128 (-1) (+1) Quter-race fault
(7) ORF 0.0187 0.0535 0.1328 0.0887 (-1) (+1) Quter-race fault
(8) ORF | 0.0183 0.0727 0.1736 0.1363 (-1) (+1) Quter-race fault
(9) ORF 0.0181 0.0628 0.1976 0.0873 (-1) (+1) Quter-race fault
(10) ORF | 0.0171 0.0185 0.1533 0.0831 (-1) (+1) Quter-race fault
(11) BF 0.0186 0.0197 0.0492 0.1026 (-1) (-1) (+1) Ball fault
(12) BF 0.0201 0.0201 0.0597 0.0870 (-1) (-1) (+1) Ball fault
(13) BF 0.0186 0.0201 0.0567 0.0964 (-1) (-1) (+1) Ball fault
(14) BF 0.0185 0.0210 0.0494 0.0866 (-1) (-1) (+1) Ball fault
(15) BF 0.0190 0.0201 0.0460 0.0989 (-1) (-1) (+1) Ball fault
(16) NOR | 0.0293 0.0589 0.0154 0.0017 (-1) (-1) (-1) Normal
(17) NOR | 0.0296 0.0513 0.0157 0.0181 (-1) (-1) (-1) Normal
(18) NOR | 0.0331 0.0608 0.0161 0.0020 (-1) (-1) (-1) Normal
(19) NOR | 0.0314 0.0558 0.0163 0.0208 (-1) (-1) (-1) Normal
(20) NOR | 0.0307 0.0608 0.0155 0.0016 (-1) (-1) (-1) Normal
7 CONCLUSION

Because bearing failure signals are non-stationary, this paper proposes a failure diagnosis method based on
MVMD-RMS and DE-LSSVM. Initially, MVVMD is used to preprocess various signal types into component
functions. Subsequently, the RMS operator is employed to characterize these component functions,
generating the input matrix for the LSSVM classifier. This input matrix serves as the training and testing
data for the LSSVM classifier. Upon training, DE-LSSVM determines the optimal pair of values (y, o) for
testing. The test results indicate that the proposed method exhibits the highest accuracy with the shortest
processing time when compared to other methods. A limitation of this method is the limited dataset; training
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and testing are only conducted on known data. In the future, the author plans to introduce noise to the
dataset to create a more comprehensive and generalized dataset.

Table 6: The comparing results of the classification of bearing failure of the classifiers MVMD-RMS-DE-
LSSVM with MVMD-RMS-PSO-LSSVM and MVMD-RMS-GA-LSSVM methods.

Classifier 1 Classifier 2 Classifier 3 Overall

Errorin

Method | Optimaly | Optimal o Optimal y | Optimal & Optimal y | Optimal & Validation

set %
MVMD-

RMS-DE- | 831,806967 | 33,3375934 | 336,0741023 | 9,211096724 | 108,4409528 | 80,37404999 1,1363
LSSVM
MVMD-

ll:\;g/lg__ 802,953382 | 51,687694 | 213,8031374 | 2,73251705 | 600,2212078 110,798935 1,1363
LSSVM
MVMD-

RMS-GA- | 670,46784 | 293,614855 | 265,5473938 139,277208 | 908,5352424 | 246,2118214 6,8182
LSSVM

Table 7: The comparing result means of the classification of bearing failure of the classifiers MVMD-RMS-DE-
LSSVM with MVMD-RMS-PSO-LSSVM, and MVMD-RMS-GA-LSSVM methods.

Method Cost time total (s) Test error mean (%)
MVMD-RMS-DE-LSSVM 43.6716 0.2273
MVMD-RMS-PSO-LSSVM 235.6504 2.3864
MVMD-RMS-GA-LSSVM 61.9047 8.7500
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PHUONG PHAP MOI CHAN POAN KHUYET TAT O Bl DUA TREN TOAN MVMD-
RMS VA DE-LSSVM

AO HUNG LINH
Khoa Céng nghé Co khi, Truong Pai hoc Cong nghiép Thanh phé Ho Chi Minh
Tac gia lién hé: aohunglinh@iuh.edu.vn

Tém tit. Nghién ctru nay dé xuat mot phuong phap méi trong viée chian doan khuyét tat 6 bi bang cach
sir dung méy véc to hd trg binh phuong t6i thiéu (LSSVM). Cac tham s6 ciia LSSVM duorc tdi uru hoa bang
thuat toan tién hoa vi phan DE-LSSVM. Pau tién, tin hiéu dao dong cta b bi duoc phan ra thanh cac ham
con bang phuong phap phan ri mo hinh bién doi da bién (MVMD). Sau d6, cac ham nay duoc chuyén thanh
cac ma tran dac trung béng phuong phap gia tri hiéu dung thyc (RMS). Cudi cling, cac ma trdn nay duoc
st dung lam dit li€u dau vao cho bd phan loai DE-LSSVM. Két qua thyc nghiém cho thy ring phuong
phép méi nay cung cép d6 chinh xéc cao trong viéc nhan dang khuyet tat 6 bi, dong thoi giam thiéu thoi
gian can thiét cho qua trinh nhan dang so véi cac phuo’ng phap truyén thong trén cung tap dir liéu.

Tir kho6a. Phuong phap phan rd mo hinh bién dbi da bién; chan doan hu hong; gia tri hiéu dung thuc; thuat
toan toan tién hoa vi phan; may véc to hd trg binh phuong t6i thiéu.
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