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Abstract. This research introduces a novel method for roller bearing fault diagnosis based on the Least 

Squares Support Vector Machine (LSSVM) with parameters optimized using the Differential Evolution 

(DE) algorithm, referred to as DE-LSSVM. Initially, the Multivariate Variational Mode Decomposition 

(MVMD) method decomposes the acceleration vibration signals from roller bearings into component 

functions. Subsequently, these functions extract initial feature matrices using the root mean square (RMS) 

method. Finally, these values serve as input vectors for the DE-LSSVM classifier. Experimental results 

illustrate that the proposed method exhibits lower test error rates and reduced computational time when 

compared to other methods using the same collected data. 

Keywords.  Multivariate variational mode decomposition; fault diagnosis; root mean square; differential 

evolution; least square support vector machine. 

1 INTRODUCTION 

The roller bearing is an interposed element between the stationary part and the rotating part. A roller 

bearing failure can lead to a terrible failure, so roller bearing failure diagnosis plays a key role in 

guaranteeing continued system operation. Therefore, the diagnosis of roller bearing faults is the focus of 

this paper. Roller bearing failure diagnosis consists of three stages: data collection, feature extraction, and 

pattern recognition, of which these latter two stages play a significant role. When a bearing failure appears, 

fault characteristic information extraction is strenuous because of non-stationary feature of the roller 

bearing vibration signal. Feature extraction includes signal decompositions and feature extraction. The 

signal decomposition methods consist of Empirical Mode Decomposition (EMD) [1], Local Mean 

Decomposition (LMD)[2], Local-scale Characteristic Decomposition (LCD)[3]. In general, these methods 

decompose a vibration signal into the sum of component and residual signals. However, these methods 

suffer from drawbacks, including end effects and mode mixing during the sifting process, rendering them 

inefficient for roller bearing vibration signals.  Recently, Naveed Ur Rehman et al. proposed the method to 

decompose the signal, namely Multivariate Variational Model Decomposition (MVMD)[4]. This method 

overcomes the shortcomings of the EMD, LMD, and LCD methods and gives high efficiency. MVMD 

utilize for denoising, blink removal from EEG signal, multi-fault diagnosis [5-8].  

The component signals are feature extracted to form feature matrices using the methods of frequency 

ratio analysis [9], energy entropy [10], single value decomposition method (SVD) [11] and autoregressive 

(AR) model [12]. The feature extraction stage aims to reduce the input matrix size for the patten recognition 

step. In this paper, the root mean square (RMS) is used to extract features of the roller bearing signal. 

Pattern recognition methods include using discriminable predictive model class discrimination 

(VPMCD) [13], k-nearest neighbor[14], hidden Markov model[15], artificial neural networks (ANNs) [16] 

and support vector machines (SVM) [17]. The disadvantage of VPMCD is difficult to set the variable 

parameters of a model. The disadvantage of the k-nearest neighbor method is computationally expensive 

and lazy learning. Hidden Markov models do not explicitly catch the time in a specified state due to their 

Markovian behavior. The support vector machine method has more advantages than ANN, meaning it has 

high generalizability with few numbers of training samples. This is very suitable when dealing with 

technical problems, but it is awfully expensive to collect large numbers of samples. LSSVM proposed by 

Suyken [11] is a modified version of SVM to reduce the computational workload. Using the LSSVM in the 

process of training, a least squares error function is recommended to obtain a linear set of equations in dual 

space. Thus, the data training problem is reduced to just solving a set of linear equations instead of 

quadratics like in SVM. LSSVM shows performance in prediction accuracy, fast computation, and high 

classification. However, the challenge for LSSVM users is the selection of the parameters of this model. 

The parameters of this model include the penalty factor and Kernel parameter. Usually, the selection of 

CƠ KHÍ NĂNG LƯỢNG 

mailto:aohunglinh@iuh.edu.vn


A NEW ROLLER BEARING FAULT DIAGNOSIS… 

53 

 

these parameters is based on heuristic search algorithms. Heuristic algorithms are often used to select and 

search for parameters for LSSVM, such as Genetic Algorithm (GA)[18], Differential Evolution algorithm 

(DE)[19], Particle Swarm Optimization (PSO)[20]. Differential Evolution algorithm showed outstanding 

advantages in solving optimization problems when compared with GA and PSO algorithms. In there, we 

propose using the DE algorithm as a tool for optimal parameters selection for the LSSVM classifier.  

In this paper, we use MVMD method combined with RMS operator for feature extraction and DE-

LSSVM classifier for fault identification. Firstly, the MVMD method decayed the bearing acceleration 

vibration signals into component functions. Then these component functions are extracted into a feature 

matrix by the RMS operator. The feature matrices are used as the input matrix for the LSSVM classifier. 

The parameters of the LSSVM set are optimized by the DE to generate the DE-LSSVM classifier. The 

experimental results showed the DE-LSSVM classifier gave lower test error results and shorter time when 

are compared with the GA-LSSVM and PSO-LSSVM classifiers with the same input data. The paper is 

arranged as follows: Section 1 shows MVMD method and RMS, Section 2 presents DE Algorithm, Section 

3 presents optimization of LSSVM parameters based on DE. Section 4 presents the application of DE-

LSSVM to diagnose bearing failure and the experimental process along with the results presented in section 

5. Section 6 presents the conclusion of the paper. 

2 MVMD-RMS  

2.1 Multivariate Variational Mode Decomposition (MVMD) 

The MVMD method is an adaptive orthogonal signal decomposition method for the multivariable or 

multichannel data set [4]. It is the extension of the VMD [21] algorithm and is a powerful method for 

sampling and anti-interference. The main idea of MVMD is to take out assume K quantity of multivariable 

modulation vibrations uk(t) from the input data x(t) containing N data channels, that is, x(t) = [x1(t), x2(t), . . . 

xN (t)] 

𝑥(𝑡) = ∑ 𝑢𝑘
𝐾
𝑘=1  (𝑡)                                              (1) 

where uk(t)={u1(t), u2 (t),…, uk}.  

The fitness function of MVMD becomes the multivariate expansion of the fitness function used in the 

corresponding VMD optimization problem and is showed by equation: 

𝑔 = ∑  ‖𝜕𝑡[𝑒−𝑗𝜔𝑘𝑡𝑢𝑘
∗ (𝑡)]‖

2

2
    (2) 

in which 𝑢𝑘
∗ (𝑡)  is the analytic signal corresponding to uk(t), ωk is a single frequency component and is used 

in the harmonic mixing of the whole vector uk (t). 

This function g can be represented as follows: 

𝑔 = ∑  ∑‖𝜕𝑡[𝑢𝑘,𝑛
∗ (𝑡)𝑒−𝑗𝜔𝑘𝑡]‖

2

2
     (3) 

in which 𝑢𝑘,𝑛
∗ (𝑡) includes channel number n and mode number k. 

The problem of MVMD can be presented:  

min
{𝑢𝑘,𝑛},{𝜔𝑘}

      

{∑  ∑‖𝜕𝑡[𝑢𝑘,𝑛
∗ (𝑡)𝑒−𝑗𝜔𝑘𝑡]‖

2

2
   }   

 (4) 

𝑠. 𝑡. 𝑋𝑁 ∑ 𝑢𝑘,𝑛(𝑡)

𝑘

, 𝑛 = 1,2, … , 𝑁 

The Lagrange multiplier method and the quadratic penalty method are included in Eq.4 to transform the 

constrained variable problem into the unconstrained variable problem. The Lagrange parameter L is 

represented as follows: 

𝐿({𝑢𝑘,𝑛}, {𝜔𝑘}, 𝜆𝑛) = 𝛼 ∑ ∑ ‖𝜕𝑡 [(𝛿(𝑡) +
𝑗

𝜋𝑡
) ∗ 𝑢𝑘,𝑛

∗ (𝑡)] 𝑒−𝑗𝜔𝑘𝑡‖
2

2
𝑁
𝑛=1

𝐾
𝑘=1 + ∑ ‖𝑥𝑛(𝑡) − ∑ 𝑢𝑘,𝑛

𝐾
𝑘=1 (𝑡)‖

2

2𝑁
𝑛=1 +

∑ 〈𝜆(𝑡), 𝑥(𝑡) − ∑ 𝑢𝑘
𝐾
𝑘=1 (𝑡)〉𝑁

𝑛=1  

 (5) 
where, 𝛼 is the balancing parameter of the ‘‘data-fidelity’’ constraint. 

Details of the MVMD method are presented in [4]. The number of component functions 𝑢𝑘
∗ (𝑡) determines 

the signal decay time and the classification time of the LSSVM classifier. The larger the number of 

component functions, the higher the computational time cost. In this paper, we choose the number of 
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component functions to be 4 because important information is often contained in the first components. After 

decomposing the bearing acceleration vibration signal into component functions, in the next step, these 

component functions are extracted into characteristic matrices by the root mean square operator. 

2.2 Root Mean Square  

The signal x(t) has been decomposed with MVMD into n uk. If n uk achieves by using the MVMD method 

to divide the roller bearing oscillation signal, it will make RMS of the n uk to become 

[RMS1,RMS2, . . . ,RMSn] equivalent. As the {u1(t),u2(t),…,un(t)} include different frequency components, 

Z={Z1,Z2,…,Zn}, forms an amplitude distribution in the frequency domain of roller bearing vibration signal, 

and then the corresponding MVMD RMS is designated as  

 𝑅𝑜𝑜𝑡 𝑀𝑒𝑎𝑛 𝑆𝑞𝑢𝑎𝑟𝑒                      𝑅𝑀𝑆 = √
1

𝑛
∑ |𝑢𝑘|2𝑛

𝑘=1    (6)                        

Fig. 1 (a), (b), (c), and (d) show the roller bearing acceleration vibration signals with 4 conditions: Normal, 

inner-race fault, out-race fault, and ball fault, respectively. Table 1 shows that RMS of each roller bearing 

vibration signal is different because of the uncertain amplitude distribution and frequency range. Therefore, 

the LSSVM classifier will be effective in identifying roller bearing conditions based on these RMS values. 

 
Figure 1: The vibration acceleration signals of the normal  

(a), inner-race fault (b), outer-race fault (c), and ball fault roller bearing (d) 

 

Table 1: The MVMD Root Mean Square of the vibration signals of the roller bearing with different faults. 

 
Inner-race fault 

(×103) 

Out-race fault 

(×103) 

Ball fault 

(×103) 

Normal 

(×103) 

21.40 16.53 18.61 27.66 

3 DIFFERENTIAL EVOLUTION (DE)  

The DE is a heuristic search algorithm that includes 3 basic genetic operators: mutation, crossover, and 

selection to produce test individuals. The DE algorithm consists of six steps as follows[22]: (i) Problem 

definition and algorithm parameters; (ii) Initialization; (iii) Mutation; (iv) Crossover; (v) Selection ; (vi) 

End. The procedure of the DE algorithm is shown in Fig. 2. 

Problem definition and algorithm parameters: 

𝑚𝑖𝑛 𝑓(𝑥)       (7)                                    

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝒙𝑖 ∈ 𝑅𝑖 = [𝑙𝑖, 𝑢𝑖], 𝑖 = 1,2, … 𝑁     

where  f(x) is a fitness function, x =(x1,x2,…,xN) is the vector of decision variables, Ri is the range of feasible 

values for the i-th decision variable, and N is the number of decision variables,  li and ui are the lower and 

upper bounds of the i-th decision variable, respectively; 
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Begin Initialization Crossover EndMutation
 Is satify stop 

conditions ?

Yes
Selection

No

 
Figure 2: Flowchart of DE algorithm 

4 DE BASED LSSVM PARAMETERS OPTIMIZATION 

4.1 Least square support vector machine (LSSVM) 

Suykens et al. proposed LSSVM to reduce the computationally assigned work of SVM by using equality 

constraints [23]. This method figures out the solution for convex optimization problems with fine 

abstraction ability for the optimal separate hyperplane. Suppose {(xi, yi)|i=1,2,…,l} as the training set of 

sample numbers is l. The sample of xi , i=1,2,…,l corresponds to one output yi  (-1,1), the objective 

function and constraint condition are shown as follows: 

{
min  𝐽(𝑤, 𝑒) =

1

2
𝑤𝑇𝑤 +

1

2
𝛾 ∑ 𝑒𝑖

2𝑙
𝑖=1

𝑠. 𝑡.  𝑦
𝑖
(𝑤𝑇𝜑(𝑥𝑖) + 𝑏) = 1 − 𝑒𝑖,    𝑖 = {1,2, … , 𝑙}

  (8) 

where, 𝑒i are slack variables and 𝛾 ≥ 0 is a penalty factor. 

The training results are decided by values selection of 𝛾. Therefore, it is important to search for the optimal 

value for 𝛾. This parameter should be modified conscientiously. The Lagrange function can be defined: 

𝐿(𝑤, 𝑏, 𝑒, 𝛼) =  
1

2
𝑤𝑇𝑤 +

1

2
𝛾 ∑ 𝑒𝑖

2𝑙
𝑖=1 − ∑ 𝛼𝑖{𝑦𝑖(𝑤𝑇𝜑(𝑥𝑖) + 𝑏) − 1 + 𝑒𝑖

𝑙
𝑖=1   (9) 

where, the 𝛼𝑖 values are the Lagrange multipliers, which can be positive or negative. The optimal condition 

is as follows: 
𝜕𝐿

𝜕𝑤
= 0;

𝜕𝐿

𝜕𝑏
= 0;

𝜕𝐿

𝜕𝑒𝑖
= 0; 

𝜕𝐿

𝜕𝛼𝑖
= 0  (10) 

The matrix equation can be obtained as follows: 

[
0 𝑌𝑇

𝑌 Ω +
𝐼

𝛾

] [
𝑏
𝛼

] = [
0
𝐼 ̅]  (11) 

where 𝑌𝑇 = [𝑦1, 𝑦2, … , 𝑦𝑙];  𝐼 is unit matrix; 𝐼 ̅ = [1; 1; … ; 1]; 𝛼 = [𝛼1, 𝛼2, … , 𝛼𝑙]; Ω =

𝑦𝑖𝑦𝑗𝜑𝑇(𝑥𝑖)𝜑(𝑥𝑗) = 𝑦𝑖𝑦𝑗𝐾(𝑥𝑖 , 𝑥𝑗); 𝐾(𝑥𝑖, 𝑥𝑗) is Kernel function of SVM; i, j=1,2,…N. 

The LSSVM classifier in the dual space can be obtained as follows: 

𝑓(𝑥) = 𝑠𝑔𝑛[∑ 𝛼𝑖𝑦𝑖𝐾(𝑥, 𝑥𝑖) + 𝑏𝑙
𝑖=1 ]  (12) 

The Gauss radial basic function (RBF) is used to increase LSSVM performance and generalization, as 

represented as follows:  

𝐾(𝑥, 𝑥𝑖) = 𝑒𝑥𝑝 (
−‖𝑥−𝑥𝑖‖2

2𝜎2 )   (13) 

where 𝜎 is a Kernel parameter. 

Summary, the parameter pairs (𝛾, 𝜎) affect the classification efficiency of LSSVM. The proper selection of 

these two parameters will impact on LSSVM learning performance. Therefore, the DE algorithm is utilized 

to optimize these parameters to achieve high classification accuracy.  

4.2 Parameters optimization of LSSVM based on DE 

As mentioned in previous studies [12,13], LSSVM parameters strongly influence the classifier 

performance. The selection of optimal parameters for LSSVM is mainly based on user experience. In here, 

we propose to use DE algorithm to find the LSSVM optimal parameters. 

The parameter pairs (𝛾, 𝜎) are considered as optimization variables, while the test error is a suitable 

measure of the optimization problem. In here, the objective function is the test error of the LSSVM and is 

represented as follows: 

G(γ, σ) =  TestErrorLSSVM
(γ, σ)  (14) 

where 𝐺(γ, 𝜎) is a fitness function and 𝑇𝑒𝑠𝑡𝐸𝑟𝑟𝑜𝑟𝐿𝑆𝑆𝑉𝑀
(γ, 𝜎) is define:  
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𝑇𝑒𝑠𝑡𝐸𝑟𝑟𝑜𝑟𝐿𝑆𝑆𝑉𝑀
=  

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝑖𝑛 𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 𝑖𝑛 𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛 𝑠𝑒𝑡 
                 (15) 

In general, the DE was integrated into the LSSVM training procedure to obtain the optimal parameters 

for minimizing the test error and generalization capability of the LSSVMs. In the first generation, each 

individual is randomly obtained. Normally, the LSSVM algorithm calculates the corresponding output 

weights matrix for each individual. Then, DE can be applied to find the fitness measurement for each 

individual in the population. This process was repeated until the stopping condition was satisfied. When 

the evolution is finished, the optimal parameters of the LSSVM are ready to conduct the classification. The 

procedure of DE-LSSVM algorithm is shown as follows (Fig.3): 

DE

LSSVM parameters ( g ,  s )

Training LSSVM Model

Calculating the fitness function

Optimal LSSVM parameters obtained

Is the stopping condition satisfied?

Yes

No

 
Figure 3: The parameter optimization flowchart of LSSVM based on DE 

 

4.2.1 Parameters analysis of SVM 

To analyze the influence of parameters on the generalization performance of SVM, we take the RBF 

kernel as an example and plot the test error surfaces, test error boundaries with gamma and sigma 

parameters ranging from 0 to 1000 on the dataset.  

The test error boundary is indicated on the right of Fig.4, where the x-axis and y-axis represent γ and σ, 

respectively. Meanwhile, the test error surfaces are displayed on the left, with the x-axis and y-axis 

representing  γ and σ, respectively. Each grid node in the (x, y) plane of the test error is an abbreviation for 

a parameter combination, and the z-axis represents the test error value obtained for each parameter 

combination. Because there are multiple local minima in these test error plots, finding the optimal parameter 

combination is not straightforward. The test error is lower in one region and significantly higher on both 

sides of the lower region. This makes it convenient for us to use an optimization procedure to achieve the 

optimal parameters for the SVM. Figure 4 has many local optimal points, so this article uses DE to solve 

the global optimization problem for SVM. 

4.2.2 Parameter setting for algorithms 

Parameters of the DE algorithm were configured as follows: Population Size (NP): 20; Mutation Scale 

Factor (F): F = 0.4 + (1 - 0.4) * rand; Crossover Probability (CR): 0.9; Maximum Number of Generations 
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(Max_Gen): 100; Termination Criteria: 10-6; Crossover Method: rand/1. 

 
Figure 4: Test error surface and contour with parameters on dataset 

 

 
Figure 5: Investigate the convergence of the algorithms 

Parameters of the PSO algorithm were fixed with the values given in the Ref. [24, 25]; that is, 𝑊 

=0.75, 𝑐1 = 𝑐2 = 1.5, the numbers of particles was 20, and the iteration count was 100. Parameters of the 

GA algorithm were configured as follows: Population Size (NP): 20; Maximum Number of Generations 

(Max_Gen): 100; Termination Criteria: 10-6.  

5 APPLICATION OF DE-LSSVM TO ROLLER BEARING FAULT DIANOSIS 

5.1 Data Acquisition 

The data for this paper is provided by the Case Western Reserve University Bearings Data Center 

Website (CWRUBDCW) with permission from Professor Loparo [26] (Fig.6). The test stand included a 2 

hp Reliance Electric motor, a torque transducer/encoder, a dynamometer, and control electronics. The 
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sample frequency was 485063 Hz and the motor speed was 1797 rpm. The deep groove ball bearing 

manufactured by SKF was used in this test stand. The type of roller bearing is 6205-2RS JEM. The test 

bearings of electro-discharge machining with fault diameters of 0.007 inches were selected. The roller 

bearings with the four conditions (normal (NOR), inner-race fault (IRF), outer-race fault (ORF), and ball 

fault (BF)) include 432 samples. The number of collection samples is divided into 3 parts, one part for 

testing and 2 parts for training and valiation. Table 2 shows collection of vibration signal samples. 

 
Figure 6: Roller bearing vibration data collection model, extracted from [26] 

Table 2: Collection of vibration signal samples 

Roller bearing conditions Class Collection samples Training samples Test samples 

Inner-race fault (IRF) 1 108 72 36 

Outer-race fault (ORF) 2 108 72 36 

Ball fault (BF) 3 108 72 36 

Normal (NOR) 4 108 72 36 

5.2 Application 

From the above analysis, we can see the MVMD-RMS of the roller bearing vibration signals with 

different operating conditions and failure modes are distinctly different. In this paper, the fault characteristic 

of each uk is adopted as DE-LSSVM input vector. It can effectively determine the working condition and 

fault patterns of the bearing. The flow chart of the roller bearing fault diagnosis method based on MVMD-

RMS and DE-LSSVM is shown in Fig. 7. The steps to conduct the experiment are as follows: 

(1) Use the MVMD to decompose the roller bearing vibration signals into a number of component 

functions uk . Because the main information of the fault roller bearing was mainly included in the 

first four components, the first four components uk were selected to form the initial feature vector 

matrix. 

(2) Calculate the RMSi of the component functions uk   by using Eq. (6); 

(3) Build feature vector Z with the RMS as element, namely MVMD-RMS vector 
∑ 𝑍 = [𝑅𝑀𝑆1, 𝑅𝑀𝑆2, … , 𝑅𝑀𝑆𝑚] (16) 

(4) Divide the feature vector data into three groups: the training, the validation, and the testing 

groups with a 60%, 20%, and 20% distribution, respectively. 

(5) Evaluate the similarity of data by calculating the max min value. 

(6) Train and validate the DE-LSSVM classification model to classify the actual roller bearing fault 

conditions. After this process, the optimal parameters of DE-LSSVM are 𝛾 and σ, which are used 

to test the samples. A set of DE-LSSVM(i) i=1,2,3,4 are constructed to identify bearing conditions 

IRF, ORF, BF and NOR listed in Table 3. In order to define the condition of roller bearing, DE-

LSSVM1 was first used to separate the IRF condition from another condition by setting these 

conditions as y = +1 and the other conditions as y = −1. Second, DE-LSSVM2 was used to separate 

the ORF condition from other conditions by setting outer-race fault as y = +1 and the other 

conditions as y = −1. Third, DE-LSSVM3 was used to separate the BF condition from other 

condition by setting BF as y = +1 and the other conditions as y = −1. Because the data set had only 

got four conditions that needed to be identified, the rest was NOR condition.  
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6 RESULT AND DISCUSION 

Table 4 indicates that the dataset exhibits similar values for the training, validation, and test sets, with 

Xi representing the dataset. Consequently, strong training and validation outcomes can be expected to yield 

favorable test results.  

Fig. 4 demonstrates that the convergence speed of DE is superior to that of PSO or GA. DE reached a 

validation error value of 1.1363 in the 10th generation, whereas PSO attained the same value in the 35th 

generation. GA, on the other hand, reached a validation error value of 6.8182 in the 8th generation. 
Table 3 : Classifier DE-LSSVM model 

Classifier model Roller bearing condition 

IRF ORF BF NOR 

DE-LSSVM1 (+1) (-1) (-1) (-1) 

DE-LSSVM2 (-1) (+1) (-1) (-1) 

DE-LSSVM3 (-1) (-1) (+1) (-1) 

DE-LSSVM4 (-1) (-1) (-1) (+1) 

 

DE

LSSVM parameters ( g ,  s )

Training LSSVM Model

Training 

Data

Calculating the fitness function

Optimal LSSVM parameters obtained

Is stop condition satisfied ?

Yes

No

DE-LSSVM

Roller Bearing 

Fault Detection

Testing 

Data

RMS

MVMD

Roller Bearing

Vibration Signals

Validation 

Data

 
Figure 7: Roller bearing fault detection method based on MVMD-RMS and DE-LSSVM 

The results of classification are presented in Table 5. To ensure a fair performance evaluation 

comparison, we have compared the proposed method with PSO-LSSVM and GA-LSSVM. Subsequently, 

DE-LSSVM was utilized to identify various patterns. The classification results of the validation samples 

based on MVMD preprocessing can be found in Table 6, and they are compared with those obtained using 

PSO-LSSVM and GA-LSSVM classifiers. Table 6 also includes the optimal parameters for the classifiers 

of the three methods. 

The 𝛾 and σ values of each classifier are presented in Table 6, in which the classification results of the 

proposed method give an error equal to PSO-LSSVM and lower than GA-LSSVM with the validation data 

set. However, as shown in Fig.5, the convergence speed of DE-LSSVM is faster than PSO, so it gives better 

classification results in the test data set. The classification results in the test set are presented in Table 7. At 
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the same time, the program running time of the MVMD-RMS-DE-LSSVM method is shorter than the 

MVMD-RMS-PSO-LSSVM and MVMD-RMS methods -GA-LSSVM. 
Table 4: Evaluate the similarity of the data. 

 

Class 

   Group  

X1 X2 X3 X4 

Min Max Min Max Min Max Min Max 

 Train 0,018958 0,02297 0,08562 0,093926 0,131234 0,150696 0,132914 0,175929 

1 Validate 0,018753 0,021577 0,08467 0,095441 0,132929 0,151107 0,134901 0,160531 

 Test 0,018347 0,021681 0,085316 0,094438 0,136541 0,151989 0,138503 0,160235 

 Train 0,013713 0,019971 0,017538 0,094156 0,091671 0,200456 0,073445 0,167629 

2 Validate 0,01426 0,018398 0,018203 0,092711 0,098826 0,175419 0,070551 0,148737 

 Test 0,014137 0,018452 0,01822 0,086627 0,100457 0,189511 0,083109 0,137662 

 Train 0,013093 0,018984 0,018052 0,022713 0,045982 0,094449 0,068838 0,121215 

3 Validate 0,013448 0,020102 0,017858 0,022344 0,046407 0,095181 0,074325 0,108941 

 Test 0,013065 0,018696 0,01855 0,021636 0,045447 0,084691 0,072277 0,112296 

 Train 0,016944 0,036421 0,047963 0,064346 0,014935 0,017217 0,000905 0,028515 

4 Validate 0,019665 0,034381 0,051281 0,06075 0,015266 0,016644 0,001642 0,027754 

 Test 0,019928 0,030895 0,042808 0,061649 0,015223 0,016655 0,001376 0,034011 

Table 5: Classification results of MVMD-RMS and DE-LSSVM method 

Test 

samples 

MVMD-

RMS 1 

MVMD-

RMS 2  

MVMD-

RMS 3 

 

MVMD-

RMS 4 

DE - 

SVM1 

classifier 

DE - 

SVM2 

classifier 

DE - 

SVM3 

classifier 

Identification 

results 

(1) IRF 0.0214 0.0882 0.1445 0.1519 (+1)   Inner-race fault 

(2) IRF 0.0208 0.0927 0.1415 0.1469 (+1)   Inner-race fault 

(3) IRF  0.0200 0.0889 0.1387 0.1385 (+1)   Inner-race fault 

(4) IRF  0.0230 0.0877 0.1385 0.1360 (+1)   Inner-race fault 

(5) IRF 0.0219 0.0888 0.1479 0.1513 (+1)   Inner-race fault 

(6) ORF  0.0178 0.0188 0.1575 0.1128 (-1) (+1)  Outer-race fault 

(7) ORF 0.0187 0.0535 0.1328 0.0887 (-1) (+1)  Outer-race fault 

(8)  ORF 0.0183 0.0727 0.1736 0.1363 (-1) (+1)  Outer-race fault 

(9) ORF  0.0181 0.0628 0.1976 0.0873 (-1) (+1)  Outer-race fault 

(10) ORF  0.0171 0.0185 0.1533 0.0831 (-1) (+1)  Outer-race fault 

(11) BF 0.0186 0.0197 0.0492 0.1026 (-1) (-1) (+1) Ball fault 

(12) BF 0.0201 0.0201 0.0597 0.0870 (-1) (-1) (+1) Ball fault 

(13) BF  0.0186 0.0201 0.0567 0.0964 (-1) (-1) (+1) Ball fault 

(14) BF  0.0185 0.0210 0.0494 0.0866 (-1) (-1) (+1) Ball fault 

(15) BF 0.0190 0.0201 0.0460 0.0989 (-1) (-1) (+1) Ball fault 

(16) NOR 0.0293 0.0589 0.0154 0.0017 (-1) (-1) (-1) Normal 

(17) NOR 0.0296 0.0513 0.0157 0.0181 (-1) (-1) (-1) Normal 

(18) NOR 0.0331 0.0608 0.0161 0.0020 (-1) (-1) (-1) Normal 

(19) NOR 0.0314 0.0558 0.0163 0.0208 (-1) (-1) (-1) Normal 

(20) NOR 0.0307 0.0608 0.0155 0.0016 (-1) (-1) (-1) Normal 

7 CONCLUSION 

Because bearing failure signals are non-stationary, this paper proposes a failure diagnosis method based on 

MVMD-RMS and DE-LSSVM. Initially, MVMD is used to preprocess various signal types into component 

functions. Subsequently, the RMS operator is employed to characterize these component functions, 

generating the input matrix for the LSSVM classifier. This input matrix serves as the training and testing 

data for the LSSVM classifier. Upon training, DE-LSSVM determines the optimal pair of values (γ, σ) for 

testing. The test results indicate that the proposed method exhibits the highest accuracy with the shortest 

processing time when compared to other methods. A limitation of this method is the limited dataset; training 
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and testing are only conducted on known data. In the future, the author plans to introduce noise to the 

dataset to create a more comprehensive and generalized dataset. 

Table 6: The comparing results of the classification of bearing failure of the classifiers MVMD-RMS-DE-

LSSVM with MVMD-RMS-PSO-LSSVM and MVMD-RMS-GA-LSSVM methods. 

  Classifier 1 Classifier 2 Classifier 3 Overall 

Error in 

Validation 

set % 
Method Optimal g  Optimal s Optimal g Optimal s Optimal g Optimal s 

MVMD-

RMS-DE-

LSSVM 

831,806967 33,3375934 336,0741023 9,211096724 108,4409528 80,37404999 1,1363 

MVMD-

RMS-

PSO-

LSSVM 

802,953382 51,687694 213,8031374 2,73251705 600,2212078 110,798935 1,1363 

MVMD-

RMS-GA-

LSSVM 

670,46784 293,614855 265,5473938 139,277208 908,5352424 246,2118214 6,8182 

 

Table 7: The comparing result means of the classification of bearing failure of the classifiers MVMD-RMS-DE-

LSSVM with MVMD-RMS-PSO-LSSVM, and MVMD-RMS-GA-LSSVM methods. 

Method Cost time total (s) Test error mean (%) 

MVMD-RMS-DE-LSSVM 43.6716 0.2273 

MVMD-RMS-PSO-LSSVM 235.6504   2.3864 

MVMD-RMS-GA-LSSVM 61.9047 8.7500 
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PHƯƠNG PHÁP MỚI CHẨN ĐOÁN KHUYẾT TẬT Ổ BI DỰA TRÊN TOÁN MVMD-
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Tóm tắt. Nghiên cứu này đề xuất một phương pháp mới trong việc chẩn đoán khuyết tật ổ bi bằng cách 

sử dụng máy véc tơ hỗ trợ bình phương tối thiểu (LSSVM). Các tham số của LSSVM được tối ưu hóa bằng 

thuật toán tiến hóa vi phân DE-LSSVM. Đầu tiên, tín hiệu dao động của ổ bi được phân rã thành các hàm 

con bằng phương pháp phân rã mô hình biến đổi đa biến (MVMD). Sau đó, các hàm này được chuyển thành 

các ma trận đặc trưng bằng phương pháp giá trị hiệu dụng thực (RMS). Cuối cùng, các ma trận này được 

sử dụng làm dữ liệu đầu vào cho bộ phân loại DE-LSSVM. Kết quả thực nghiệm cho thấy rằng phương 

pháp mới này cung cấp độ chính xác cao trong việc nhận dạng khuyết tật ổ bi, đồng thời giảm thiểu thời 

gian cần thiết cho quá trình nhận dạng so với các phương pháp truyền thống trên cùng tập dữ liệu.  

Từ khóa. Phương pháp phân rã mô hình biến đổi đa biến; chẩn đoán hư hỏng; giá trị hiệu dụng thực; thuật 

toán toán tiến hóa vi phân; máy véc tơ hỗ trợ bình phương tối thiểu. 
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