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Abstract. In this paper, we introduce a generalization of the well-known CS condition. We say an R-
module M is a CIS-module if every complement is isomorphic to a summand. We prove that if R is a
right CIS-ring right FGF ring, then R is a quasi-Frobenius ring, and if R is a right CIS-ring right CF ring,
then R is aright artinian ring. New characterizations of quasi-Frobenius rings are provided by using CIS-
rings. Moreover, many of the important propositions related to CS-rings are generalized to CIS-rings also
presented.
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1. INTRODUCTION

Throughout this paper, R is a ring with unity and we use My ( zM) to denote a unital right (left) R-
module. A submodule C is called a closed (or complement) submodule of M if it has no proper essential
extensions in M. A module M is CS (or extending) if every submodule of M is essential in a direct
summand of M; or equivalently, every complement is a summand. CS-modules have an important place in
module and ring theory (please see Dung et al., 1994). Many authors studied on CS-modules and its
generalizations (Tercan & Yucel, 2015). In this paper, we say a module M is a CIS-module if every
complement is isomorphic to a summand. Firstly we remark that, clearly, CIS-modules is a real
generalization of CS modules. Example 2.2 demonstrates that there are some CIS-modules which are not
CS. A necessary condition for the equivalence of CS and GIS conditions are given in Proposition 2.3 that
ifamodule M is C2,then M isCSifandonlyif M is CIS. From properties of CIS-modules, we have that
an R-module M is a CIS-module if and only if every submodule of M is essential in a complement
submodule of M which is isomorphic to a direct summand of M; or equivalently, for submodules A and
B of M with An B = 0, there exists a complement submodule C of M such that B<C, AnC=0
and C is isomorphic to a direct summand of M.

In this paper, we consider the relationship between CIS-rings and some other well-studied classes of rings,
and in the articles that (Pardro & Asensio, 1997; Yousif, 1997; Nicholson & Yousif, 1998), we generalized
all the results obtained with CS-rings to CIS-rings. Gémez Pardo and Guil Asensio proved in (Pardro &
Asensio, 1997) that if aring R is a right CS-ring, then every direct summand of injective envelope E(Rg)
has an essential finitely generated projective submodule. We generalize this proposition in Proposition 2.5
by proving that if R is a right CIS-ring, then every direct summand of injective envelope E(Rg) has an
essential finitely generated projective submodule. As results of Proposition 2.5, we proved in Corollary 2.8
and 2.9 that FGF and CF conjectures are true when the ring is a CIS-ring. Recall that a ring R is quasi-
Frobenius if and only if each right R-module embeds in a projective module; or equivalently, embeds in a
free module. A ring R is called a right FGF ring if each finitely generated right R-module embeds in a
free module. A ring R is called a right CF ring if each cyclic right R-module embeds in a free module.
Obviously, every right FGF ring is a right CF ring. The converse of this proposition is not true, in general.
Bjork provided in (Bjork, 1969) an example which illustrates that there is a left CF ring which is not a left
FGF ring. Let us recall CF and FGF conjectures:

1. The FGF conjecture: Should a right FGF ring be a QF ring?
2. The CF conjecture: Should a right CF ring be a right artinian ring?

Bjork (Bjork, 1972) and Tolskaya (Tolskaya, 1970) unaware of each other proved that every right
selfinjective right CF ring is right artinian. In (Pardro & Asensio, 1997), Gémez Pardo and Guil Asensio
generalize their theorem by proving that every right CS right CF ring is right artinian (please see Jain et al.,
2012, p.113). Now, we extend their result in Corollary 2.8 by proving that every right CIS right CF ring is
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right artinian. In (Pardro & Asensio, 1997), Gomez Pardo and Guil Asensio also proved that if R is a right
CS right FGF ring, then R is QF. We prove in Corollary 2.9 that if R is a right CIS right FGF ring, then
R is QF. Then, we prove in Theorem 2.10 that a ring R is a right Kasch and a left CIS-ring if and only if
R is semiperfect left continuous with Soc(Rg) <¢ gR. In Proposition 2.12, we prove that if R is a left
CIS-ring such that every cyclic right R-module is torsionless, then R is a semiperfect, left continuous ring
with soc(Rg) <® RR. Inparticular, R is left finite dimensional. In Proposition 2.13, we prove that let R
be a right cogenerator ring: (1) If R is a left CIS-ring then R is a left continuous and a right selfinjective
ring (and so is a right PF-ring). (2) If R @ R is CIS as a left R-module then R is left and right PF. In
Thorem 2.14, we show that let R be a left CIS-ring R. Then, R is a right PF-ring if and only if J(R) S
Z(Rg) and every 2-generated right R-module is torsionless. In Theorem 2.15, we prove that let R be a
left CIS-ring such that every cyclic right R-module embeds in a free module (i.e., right CF ring). Then, R
is QF if and only if J(R) € Z(RR); or equivalently, Soc(Rg) S Soc(gzR); or equivalently, R is right
mininjective. In Theorem 2.19, we prove that a ring R is QF if and only if R is a right Johns and a left
CIS-ring; or equivalently, R is left P-injective, left CIS-ring and right Noetherian ring; or equivalently, R
is left P-injective, left CIS-ring with ACC on left annihilators; or equivalently, R is left P-injective, left
CIS ring and satisfy ACC on right annihilators; or equivalently, R isaright CIS-ring and every 2-generated
right R-module embeds in a free module; or equivalently, R is a left GP-injective, left CIS-ring with ACC
on essential left ideals. In Theorem 2.20, we prove that aring R is a right Johns, left Kasch ring if and only
if R is aright CIS-ring and a right CF ring. In Theorem 2.21 we prove that a ring R is a right CIS-ring
which is left and right Kasch; if and only if R is right Kasch and a right continuous ring; or eqgivalently, R
is a semiperfect right continuous ring with essential right socle. We prove in Theorem 2.22 thataring R is
a left and right Kasch left and right CIS-ring if and only if R is a left and right CIS-ring, and the dual of
every simple right R-module is simple; or equivalently, R is semiperfect left and right continuous ring
with Soc(zR) = Soc(Rg) essential as a left and as a right R-module in R. We show in Theorem 2.25 a
ring R has a perfect duality if and only if or equivalently, R is left and right Kasch and R @ R is a left
and right CIS-module; or equivalently, the dual of every simple right R-module is simpleand R @ R isa
left and right CIS-module; or equivalently, the dual of every simple right H-module is simple and H is a
right and left CIS-ring, where H = M, (R). At the end of the paper, we prove in Corollary 2.27 aring R is
quasi-Frobenius if and only if R is right and left Kasch and a right countably X-CIS-ring.

Recall from (Smith, 1992) that a module M is a UC-module if every submodule has a unique closure; or
equivalently, the intersection of every pair of complement submodules of M is again a complement
submodule of M. A module M isa C2-module if a submodule A of M isisomorphic to a direct summand
of M, then A is the direct summand of M. A module M is called a continuous module if M is both a CS
and a C2-module. A ring R is called a right C2-ring (continuous ring) if the module Ry is a C2-module
(continuous module). Left C2-rings can be defined similarly.

The left (right) annihilator of a subset I of aring R is denoted I(X) (r(X)). M denotes the direct sum
of n copies of M. By Z and R, we denote the ring of integer and real numbers, respectively. Z, will
denote Z/nZ. M,(R) and Soc(M) denote the n X n matrix ring over R and the socle of a module M,
respectively. For any unexplained terminology please refer (Dung et al., 1994; Nicholson & Yousif, 2003).

2. CIS-MODULES AND RINGS

Definition 2.1. Amodule M is called a CIS-module if every complement submodule of M is isomorphic
to a direct summand of M. Aring R is called a right CIS-ring if the module Ry is a CIS-module. Left
CIS-rings can be defined similarly. A ring R is called a CIS-ring if it is left and right CIS.

Clearly, uniform, semisimple and CS-modules are CIS-modules. Recall from (Behboodi et al., 2018) that
a module M is a virtually semisimple module if every submodule is isomorphic to a direct summand.
Clearly, every virtually semisimple module is a CIS-module.

Example 2.2. There exist some CIS-modules which are not CS:

1. Let A be a commutative principal ideal domain (PID) and R = [‘3 ﬁ] the 2 x 2
generalized triangular matrix ring. Ry is a CIS-module but not a CS-module.
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2. LetR= [gz %2] be the 2 x 2 generalized triangular matrix ring. Ry is a nota CS-

module by (Tercan & Yucel, 2015, Example 5.102) but it is CIS.
Proposition 2.3. If a module M is a C2-module, then M is CS if and only if M is CIS.
Proof. The necessity is clear. The other direction follows immediately from the definition of the C2-module.
Corollary 2.4. Amodule M is a continuous module if and only if M is both a CIS and a C2-module.

In this section, we investigate the relationships between CIS-rings and some other important classes
of rings.
Gdmez Pardo and Guil Asensio proved in (Padro & Asensio, 1997, Theorem 2.5) that, let R be a ring and
Py afinitely generated projective module such that each direct summand of injective envelope E = E(Pg)
has an essential finitely generated projective submodule and |Q(R)| < |C(P)|. Then P cogenerates the
simple right R-modules and has finite essential socle, where Q(R) denotes a set of representatives of the
isomorphism classes of simple right R-modules, and for a right R-module M, C(M) denotes a set of
representatives of the isomorphism classes of simple submodules of M, and |X| denotes the cardinality of
a set X. They also proved that if a ring R is a right CS-ring, then every direct summand of injective
envelope E(RR) has an essential finitely generated projective submodule. We begin this section by
generalizing this proposition:
Proposition 2.5. If R is a right CIS-ring, then every direct summand of injective envelope E(Rg) has
an essential finitely generated projective submodule.
Proof. Let R bearight CIS-ringand &: Ry < E the injective envelope of Ry. Let E, be a direct summand
of E. Then A =R NE, is essential in E,. Moreover, Since Ry is CIS, A is essentially embeds in a
complement submodule ¢ of M such that C is isomorphic to a direct summand eR of Ry. Call g: 4 -
C the inclusion. By the injectivity, o extends to a homomorphism 6: C — E|.

A % C =5 ¢R

s

EU

Then 6 is monomorphism since A is essential in C and 6|, = i. Now, we have Im(8) = C = eR. Thus,
Im(0) is a finitely generated projective (indeed, cyclic) submodule of E,, which is essential since it
contains A.
Aring R iscalled right cogenerator if every right R-module is torsionless, and R is called a right PF-ring
(pseudo-Frobenius ring) if it is right cogenerator and right selfinjective; or equivalently, it is semiperfect,
right selfinjective and Soc(Rg) <® Rp. Osofsky proved in (Osofsky, 1996) that a right injective
cogenerator ring R (i.e., a right PF-ring) has finite essential right socle and is, therefore, semiperfect. In
(Padro & Asensio, 1997, Corollary 2.7), Gémez Pardo and Guil Asensio generalized Osofsky’s result and
proved that if a ring R is CS and cogenerates the simple right R-modules, then Ry has finite essential
socle. From Proposition 2.5, we obtain the following corollary which generalizes (Padro & Asensio, 1997,
Corollary 2.7):
Corollary 2.6. Let R be a ring such that Ry is CIS and cogenerates the simple right R-modules. Then
Ry has finite essential socle.
In (Padro & Asensio, 1997, Corollary 2.8), the authors proved that a ring R is right PF if and only if Ry is
a CS cogenerator; or equivalently, Ry is a cogenerator, and every direct summand of injective envelope
E(RR) contains an essential finitely generated projective submodule. We obtain in Corollary 2.7, which
extends (Padro & Asensio, 1997, Corollary 2.8), a characterization of the right PF-rings by strengthening
the hypothesis of the previous corollary:
Corollary 2.7. The following conditions are equivalent for a ring R:

1. R isright PF;

2. Ry isaCIS cogenerator;

3. Ry isacogenerator, and every direct summand of injective envelope E(Rg) contains an
essential finitely generated projective submodule.
Proof. (1) = (2) Since R is a right PF-ring then Ry is a CS cogenerator by (Padro & Asensio, 1997,
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Corollary 2.8). So, it is CIS.

(2) = (3) Clear.

(1)  (3) isproved in (Padro & Asensio, 1997, Corollary 2.8).

Recall that if R is a ring such that each cyclic right R-module has finite essential socle, then it is
right artinian. In (Padro & Asensio, 1997, Corollary 2.9), the authors proved that if R is a right CS-ring
such that every cyclic right R-module embeds in a free module, then R is right artinian. By Corollary 2.7,
we have the following corollary which generalizes (Padro & Asensio, 1997, Corollary 2.9):
Corollary 2.8. Let R be a right CIS-ring and every cyclic right R-module embeds in a free module (i.e,
right CF ring). Then R is right artinian.
In (Padro & Asensio, 1997, Corollary 2.10), the authors proved that if R is a right FGF ring and every
direct summand of the injective envelope E(Ry) contains an essential finitely generated projective
submodule, then R is QF. Now, we can state the following corollary:
Corollary 2.9. If R is aright CIS right FGF ring, then R is QF.
Aring R is called right Kasch if every simple right R-module embeds in R; or equivalently, [(A) # 0 for
every maximal right ideal A of R. Nicholson and Yousif proved in (Nicholson & Yousif, 2003, Theorem
4.10) that R is a right Kasch and a left CS-ring if and only if R is semiperfect left continuous with
soc(Rg) <® RR. The next theorem extends (Nicholson & Yousif, 1998, Lemma 2.3) and (Nicholson &
Yousif, 2003, Theorem 4.10).
Theorem 2.10. Aring R is aright Kasch and a left CIS-ring if and only if R is semiperfect left continuous
Wlth SOC(RR) Se RR'
Proof. (=:) Every right Kasch ring is a left C2-ring by (Yousif, 1997, Lemma 1.15). Then, by Proposition
2.3, R isaleft CS-ring. The rest is follows by (Nicholson & Yousif, 2003, Theorem 4.10).

(&:) Clear by (Nicholson & Yousif, 2003, Theorem 4.10).

The next corollary generalizes (Nicholson & Yousif, 2003, Corollary 4.13).
Corollary 2.11. The following conditions are equivalent for a ring R:

1. R isaleft CIS, left and right Kasch ring;
2. R is asemiperfect left continuous ring with essential left socle.

Proof. (1) = (2) R is semiperfect and left continuous by Theorem 2.10. Since R is also left Kasch, it
follows from (Nicholson & Yousif, 2003, Lemma 4.5) that Soc(zxR) <¢ RzR.

(2) = (1) It follows from (Nicholson & Yousif, 2003, Lemma 4.11(4)).

A right R-module M is called torsionless if M is embedded in a direct product of copies of R.
Recall that if A isarightideal of R, then R/A istorsionless asaright R-module; or equivalently, rl(A) =
A. In (Nicholson & Yousif, 1998, Proposition 2.4), the Nicholson and Yousif showed that if R be a left
CS-ring such that every cyclic right R-module is torsionless, then R is a semiperfect, left continuous ring
with soc(Rg) <® gR. In particular, R is left finite dimensional. The next proposition generalizes
(Nicholson & Yousif, 1998, Proposition 2.4).

Proposition 2.12. Let R be a left CIS-ring such that every cyclic right R-module is torsionless. Then R is
a semiperfect, left continuous ring with soc(Rg) < xR. In particular, R is left finite dimensional.
Proof. We have rl(A) = A for every right ideal A because R/A is torsionless. In particular, R is right
Kasch and so is left continuous with soc(Rg) <¢ &R by Theorem 2.10. Furthermore, since R is left CS,
then every complement left ideal is a summand, and so is principal. Thus, R is semiperfect by (Nicholson
& Yousif, 1998, Lemma 2.2), so write R = Re; @D...D Re,, Where each e;, is a local idempotent. Then
each Re; isa CS-module and so is uniform. So, R is left finite dimensional.
Gomez Pardo and Guil Asensio proved in (Pedro & Asensio, 1997) that, if R be a right cogenerator ring,
right CS then it is right selfinjective, or in other words, R is a right PF-ring (i.e., R is right cogenerator,
right selfinjective) if and only if R is a right cogenerator, right CS-ring. Then, we proved in Corollary 2.7
that R is a right PF-ring if and only if R is a right cogenerator, right CIS-ring. Hereby, Corollary 2.7
extends all the known results on the subject. On the other hand, recall from (Faith, 1976) that a ring R is
left and right PF if and only if R is right cogenerator, left selfinjective. Therefore, it is natural to ask that
whether the result of Gomez Pardo and Guil Asensio can be obtained if the right CS-condition by the left
CS-condition are replaced. Nicholson and Yousif gave an affirmative answer to this question in ((Nicholson
& Yousif, 1998, Proposition 2.5), and now we extend Nicholson and Yousif’s result in the following
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proposition:
Proposition 2.13. Let R be a right cogenerator ring, then:

1. If R isaleft CIS-ring then R is a left continuous and a right selfinjective ring (and so is
a right PF-ring).

2. If R@ R isClSasaleft R-module then R is left and right PF.

Proof. (1) R is a semiperfect, left continuous ring by Proposition 2.12. In particular R has a finite
number of isomorphism classes of simple right (and left) R-modules. Since R is a right cogenerator ring,
R is a right selfinjective ring by (Faith, 1976, Proposition 24.9). So, R is right PF.

(2) R is a left continuous ring by (1). Then it is a left selfinjective ring by (Yousif, 1997,
Proposition 1.21). Thus R is left PF, and hence it is right PF by (1).

In (Nicholson & Yousif, 1998, Theorem 2.8), the Nicholson and Yousif proved that let R be a left
CS-ring. Then R is aright PF-ring if and only if J(R) € Z(Rg) and every 2-generated right R-module is
torsionless. The next theorem extends (Nicholson & Yousif, 1998, Theorem 2.8).

Theorem 2.14. The following conditions are equivalent for a left CIS-ring R:

1. R isaright PF-ring;

2. J(R) € Z(Rg) and every 2-generated right R-module is torsionless.
Proof. (1) = (2) is proved in [3, Theorem 2.8].

(2) = (1) By Proposition 2.12, R is a semiperfect, left continuous ring with Soc(Rg) <® gR.
So, R isaleft CS-ring. Now, the proof is clear by (Nicholson & Yousif, 1998, Theorem 2.8).

Recall from (Anderson & Fuller, 1974) that a right artinian ring R is QF ifand only if Soc(zR) = Soc(Rg)
and Soc(eR) and Soc(Re) are simple for every local idempotent e of R. Recall that we proved Corollary
2.8 in that if R is a right CIS-ring and every cyclic right R-module embeds in a free module, then R is
right artinian. A ring R is called right mininjective if each R-homomorphism from a simple right ideal to
R is given left multiplication (Nicholson & Yousif, 1997).
Theorem 2.15. Let R be a left CIS-ring such that every cyclic right R-module embeds in a free module
(i.e., right CF ring). The following conditions are equivalent:

1. R isQF;

2. J(R) € Z(Rg);

3. Soc(Rg) € Soc(gzR);

4. R isright mininjective.
Proof. (1) = (2) Clear because R is right selfinjective.

(2) = (3) R is semiperfect by Proposition 2.12, and hence r(J) = Soc(zxR). From (2)
Soc(Rg) € r[Z(Rg)] Er(J) = Soc(gR).

(3) = (1) Itcan easily be see that Soc(Rg) <¢ RrR by Proposition 2.12. Therefore, Soc(zxR) S
Soc(Rg). So, Soc(xR) = Soc(Rg) by (3). Now, R is semiperfect by Proposition 2.12, Thus, we write
R = Re; @...@® Re,, where {ey,...,e,} is a complete set of local orthogonal idempotents. Moreover R
is left continuous by Proposition 2.12. Then, R is a left CS-ring. The rest follows by (Nicholson & Y ousif,
1998, Theorem 2.9).

(4) = (3) Itisimmediate by (Nicholson & Yousif, 1997, Theorem 1.14).

(3) = (4) Itis obvious because of (3) = (1).

Corollary 2.16. [Nicholson & Yousif, 1998, Theorem 2.9] If R is a left CS-ring such that every cyclic
right R-module embeds in a free module then the conditions from (1) to (4) in Theorem 2.15 are
equivalent.

Aring R is called a right weakly continuous ring if R is semiregular and J = Z,.. Recall from (Nicholson
& Yousif, 2003, Theorem 1.35) that R is right self-injective if and only if R @ R is continuous
(equivalently quasi-continuous) as a right R-module. The following theorem generalizes (Nicholson &
Yousif, 2003, Corollary 7.41).
Theorem 2.17. The following are equivalent for a ring R:

1. R isright self-injective;

2. (R @ R)y is aClS-module and a C2-module;

3. R isright weakly continuous and (R @ R)j is a CIS-module.

Proof. (1) = (3) clear by (Nicholson & Yousif, 2003, Corollary 7.41).
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(3) = (2) If R is right weakly continuous, so also is M,(R) = End(R @ R) by (Nicholson &
Yousif, 2003, Theorem 7.40). In particular End(R @ R) is a right C2-ring, and this implies that R @ R
is C2 by (Nicholson & Yousif, 2003, Theorem 7.15).

(2) = (1) is aconsequence of Proposition 2.3 and (Nicholson & Yousif, 2003, Theorem 7.15).
A ring R is called a left P-injective ring if every homomorphism from a principal left ideal Rt to R
can be extended to one from xR to RR. Recall that a ring R is called a left C2-ring if every left ideal
that is isomorphic to a direct summand of xR is also a direct summand of ;R. Every left P-injective
ring is a left C2-ring (Nicholson & Yousif, 2003, Proposition 5.10). Recall from (Chen & Li, 2004, Theorem
2.21) that if R is left P-injective, left CIS and right noetherian, then R is QF. The next theorem generalizes
(Chen & Li, 2004, Theorem 2.21).

Theorem 2.18. If R is left P-injective, left CIS and right noetherian then R is QF.
Proof. Clear by Proposition 2.3 because every left P-injective ring is left C2.
Nicholson and Yousif proved in (Nicholson & Yousif, 1998, Theorem 3.2) that R is QF if and only if R
is a right Johns, left CS-ring. The next theorem generalizes (Nicholson & Yousif, 1998, Theorem 3.2),
(Nicholson & Yousif, 1998, Theorem 3.4), (Chen et al., 2006, Theorem 10) and (Chen et al., 2006,
Corollary 4).
Theorem 2.19. The following are equivalent for a ring R:
1. is QF;
is a right Johns and a left CIS-ring;
is left P-injective, left CIS-ring and right Noetherian ring;
is left P-injective, left CIS-ring with ACC on left annihilators;
is left P-injective, left CIS ring and satisfy ACC on right annihilators;
is a right CIS-ring and every 2-generated right R-module embeds in a free module;
is a left GP-injective, left CIS-ring with ACC on left annihilators.
Proof. (1) = (2) Since R is QF,then R isaright Johns and a left CIS-ring by (Nicholson & Yousif, 1998,
Theorem 3.2).

(2) = (3) Clear because every right Johns ring is right noetherian left P-injective.

(3) = (1) R is QF by Theorem 2.18.

(1) = (4) Clear by (Chen et al., 2006, Corollary 4).

(4) = (3) Since R is a left P-injective ring (so is GP-injective) with ACC on left annihilators,
then R is right Artinian by (Chen & Ding, 1999, Theorem 3.7), and hence it is right Noetherian.

(1) = (5) Clear by (Chen et al., 2006, Theorem 10).

(5) = (1) Since R is left CIS and left P-injective, then R is left CS. So, proof is clear by (Chen
et al., 2006, Theorem 10).

(1) = (6) Clear by (Nicholson & Yousif, 1998, Theorem 3.4).

(6) = (1) By Proposition 2.8, R is a right artinian ring, and hence semiperfect with essential left
socle. Then R is QF by (Nicholson & Yousif, 1998, Theorem 3.4(5)).

(4) = (7) Clear because every left P-injective ring is left GP-injective.

(7) = (1) Since R is a left GP-injective ring with ACC on left annihilators, then R is right
Acrtinian by (Chen & Ding, 1999, Theorem 3.7), and hence it is right Noetherian. Now we want to show
that every complement left ideal is left annihilator. Let C be a complement left ideal of R. Since R is left
CIS, then there exist some e? = e € R such that eR = C. Since eR is left annihilator and eR = C, then
C is a left annihilator. By (Chen et al., 2006, Theorem 3), R is QF.

The next theorem extends (Nicholson & Yousif, 2003, Theorem 8.9).

Theorem 2.20. The following conditions are equivalent:
1. R isaright Johns, left Kasch ring;
2. R isaright CIS-ring and a right CF ring.
Proof. (1) = (2) Clear by (Nicholson & Yousif, 2003, Theorem 8.9).

(2) = (1) R isright finitely cogenerated by (Nicholson & Yousif, 2003, Corollary 7.32) because
it is right Kasch (being a right CF ring). Since R is right CF then every cyclic right R-module is finitely
cogenerated. This implies that R is right artinian by Vamos’ lemma (Nicholson & Yousif, 2003, Lemma
1.52), and so Soc(zR) <° Rg (as R is semiprimary).

The following theorem generalizes (Yousif, 1997, Theorem 1.16).

Noakrwd
= ii=c = v i~ v~ I~ v =]
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Theorem 2.21. The following conditions are equivalent for a ring R:
1. R isaright CIS-ring which is left and right Kasch;
2. R isright Kasch and a right continuous ring;
3. R is asemiperfect right continuous ring with essential right socle.
Proof. (1) = (2) By (Yousif, 1997, Lemma 1.15), R is a right C2-ring. By Corollary 2.4, R is right
continuous.
(2) = (1) Clear by (Yousif, 1997, Theorem 1.16).
(2) © (3) isproved in (Yousif, 1997, Theorem 1.16).
The following theorem generalizes (Yousif, 1997, Theorem 1.17). We should point out that we use
same technic used in (Yousif, 1997, Theorem 1.17) to proof the following theorem.
Theorem 2.22. The following conditions are equivalent for a ring R:
1. R isaleft and right Kasch left and right CIS-ring;
2. R isaleftand right CIS-ring, and the dual of every simple right R-module is simple;
3. R issemiperfect left and right continuous ring with Soc(3R) = Soc(Rg) essential as a
left and as a right R-module in R.
Proof. (3) = (1) Clear by (Yousif, 1997, Theorem 1.17).
(1) = (3) By (Yousif, 1997, Lemma 1.15), R is a right C2-ring. By Proposition 2.3, R is a right
CIS-ring. The proof follows by (Yousif, 1997, Theorem 1.17).
(3) = (2) Clear by (Yousif, 1997, Theorem 1.17).
(2) = (3) Itis known that if the dual of every simple right R-module is simple, then R is a right
Kasch ring. By (Yousif, 1997, Lemma 1.15), R is a left C2-ring. Then, by Corollary 2.4, R is a left
continuous ring and hence semiregular by (Utumi, 1965). Now, since R is right Kasch and a right CIS-ring,
then R has a finitely generated essential right socle, in particular R has no infinite sets of orthogonal
idempotents by Proposition 2.6. Thus, R is semiperfect, and Soc(zxR) S Soc(Rg). If e is a local
idempotent of R, then (eR/e])* = I(J).e = Soc(Rg).e is a simple left R-submodule of Re. Since R is
a left continuous ring then R is left CS. Thus, we have Soc(Rg).e <¢ Re, for every local idempotent e
of R. Itimpliesthat Soc(Re) = Soc(RR).e issimple and essential in Re, for every local idempotent e of
R. Therefore, Soc(zxR) = Soc(Rg) is essential as a left as well as a right R-module in R. By (Nicholson
& Yousif, 1997, Lemma 4.16), R is left Kasch, and by (Yousif, 1997, Lemma 1.15), R is right continuous.
Theorem 2.23. Let M be a left R-module, where R = ReR for some idempotent e € R and S = eRe.
Then:
1. The left R-module M is a CIS-module if and only if the left S-module eM is a CIS-
module.
2. Ry isCISifand only if the eRe-module Re is CIS.
Proof. It can easily be proved routinely with using (Tercan & Yucel, 2015, Lemma 2.76 and Proposition
2.77).
Theorem 2.24. M, (R) is CIS if and only if the free right R-module R™ is CIS.
Proof. The result follows immediately by Theorem 2.23 but note that M,,(R) = M,,(R)eM,,(R), where e
is the matrix unit with 1 inthe (1,1)th position and zero elsewhere.
The next theorem generalizes (Yousif, 1997, Theorem 1.18).
Theorem 2.25. The following conditions are equivalent for a ring R:
1. R has a perfect duality;
2. R isleft and right Kasch and R @ R is a left and right CIS-module;
3. The dual of every simple right R-module is simple and R @ R is a left and right CIS-
module;
4. The dual of every simple right H-module is simple and H is a right and left CIS-ring,
where H = M,(R).

Proof. (1) = (2), (1) = (3) and (1) = (4) clear by (Yousif, 1997, Theorem 1.18).

(2) = (1) By (Yousif, 1997, Lemma 1.15) and Corollary 2.4, R is left and right continuous, so R
is semiregular with J(R) = Z(xR) = Z(Ry) by (Utumi, 1965). Then by (Yousif, 1997, Lemma 1.1), R @
R is left and right continuous as an R-module. By (Mohamed & Muller, 1990, Proposition 2.10) R is left
and right self-injective ring. By Osofky’s well known result (Osofsky, 1996), R has a perfect duality.
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(3) = (4) By Theorem 2.24, H = M, (R) is a left (right) CIS-ring if and only if R @ R is a left
(right) CIS-module. By Theorem 2.22 and (Yousif, 1997, Lemma 1.2), R is a left (right) Kasch and left
(right) mininjective ring. By Morita invariance, H is left (right) Kasch, and by (Nicholson & Yousif, 1997,
Proposition 1.4), H is left (right) mininjective. Therefore, the dual of every simple right (left) H-module
is simple by (Nicholson & Yousif, 1997, Proposition 2.2).

(4) = (1) By Theorem 2.22, H is semiperfect left and right continuous ring with Soc(yH) =
Soc(Hy) essential as a left and as a right H-module. By (Nicholson & Yousif, 1997, Lemma 3.17) and
(Utumi, 1965, Corollary 7.5), R has a perfect duality.

Corollary 2.26. Suppose R is aleft Kasch ringand ITR isan arbitrary direct product of at least two copies
of R. Then the following conditions are equivalent:

1. IIR isaright CIS-ring;

2. IR isinjective as a right R-module.
Proof. (1) = (2) Since R @ R is a right CIS-module, it is right continuous by (Yousif, 1997, Lemmas
1.1and 1.15), and so R is right self-injective. So, TIR is injective as a right R-module.

(2) = (1) Obvious.

We called aring R is a right (countably) 2-CIS-ring if every direct sum of arbitrary (countably)
many copies of R is CIS as a right R-module.

Corollary 2.27. Aring R is quasi-Frobenius if and only if R is right and left Kasch and a right countably
2-CIS-ring.

Proof. Necessity is clear. For the converse let R be left Kasch and (R @ R)z be a CIS-module. Then by
(Yousif, 1997, Lemmas 1.1 and 1.15), R is a right self-injective ring. Thus R is a semiperfect ring by
(Osofsky, 1996). By (Dung et al., 1994, Corollary 8.11), R is right countably Z-injective. So, R is quasi-
Frobenius by (Faith, 1966).
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VANH VA MODPUN CO PHAN BU PANG CAU VOl HANG TU TRUC TIEP
CUA CHINH NO

NGUYEN THI THU HA o
Khoa Khoa hoc Co ban, Truong Pai hoc Cong nghiép Thanh pho Ho Chi Minh.
nguyenthithuha@iuh.edu.vn

Tom tit. Trong bai bdo nay ching t6i gisi thiéu mot mé rong cua didu kién CS ndi tiéng. Chung tdi goi
mot R-modun M 1a CIS-médun néu moi phan bul cua nd déu dang cau véi mot hang tir truc tiép. Chang toi
ching minh dwoc riang néu R 13 mot vanh FGF phai CIS phai, thi R 1 vanh tya Frobenius, va néu R 1a vanh
CF phai CIS phai thi R 1a vanh Arin phai. Tinh chit méi caa vanh tya Frobenius dugc dua ra bang cach sir
dung cac vanh CIS. Hon nita, nhiéu ménh dé quan trong lién quan dén vanh CS dugc ma rong thanh vanh
CIS cling dugc ching téi trinh bay.

Tir khoa. CIS-mddun, vanh CIS, vanh tua Frobenius, vanh CF, vanh FGF.

Received on: 26/04/2022
Accepted on: 01/07/2022

96



