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Abstract. In this paper, we introduce a generalization of the well-known CS condition. We say an 𝑅-

module 𝑀 is a 𝐶𝐼𝑆-𝑚𝑜𝑑𝑢𝑙𝑒 if every complement is isomorphic to a summand. We prove that if 𝑅 is a 

right CIS-ring right FGF ring, then 𝑅 is a quasi-Frobenius ring, and if 𝑅 is a right CIS-ring right CF ring, 

then 𝑅 is a right artinian ring. New characterizations of quasi-Frobenius rings are provided by using CIS-

rings. Moreover, many of the important propositions related to CS-rings are generalized to CIS-rings also 

presented. 
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1. INTRODUCTION 

Throughout this paper, 𝑅 is a ring with unity and we use 𝑀𝑅 ( 𝑅𝑀) to denote a unital right (left) 𝑅-

module. A submodule 𝐶 is called a closed (or complement) submodule of 𝑀 if it has no proper essential 

extensions in 𝑀. A module 𝑀 is CS (or extending) if every submodule of 𝑀 is essential in a direct 

summand of 𝑀; or equivalently, every complement is a summand. CS-modules have an important place in 

module and ring theory (please see Dung et al., 1994). Many authors studied on CS-modules and its 

generalizations (Tercan & Yucel, 2015). In this paper, we say a module 𝑀 is a 𝐶𝐼𝑆-𝑚𝑜𝑑𝑢𝑙𝑒 if every 

complement is isomorphic to a summand. Firstly we remark that, clearly, CIS-modules is a real 

generalization of CS modules. Example 2.2 demonstrates that there are some CIS-modules which are not 

CS. A necessary condition for the equivalence of CS and GIS conditions are given in Proposition 2.3 that 

if a module 𝑀 is C2, then 𝑀 is CS if and only if 𝑀 is CIS. From properties of CIS-modules, we have that 

an 𝑅-module 𝑀 is a CIS-module if and only if every submodule of 𝑀 is essential in a complement 

submodule of 𝑀 which is isomorphic to a direct summand of 𝑀; or equivalently, for submodules 𝐴 and 

𝐵 of 𝑀 with 𝐴 ∩ 𝐵 = 0, there exists a complement submodule 𝐶  of 𝑀 such that 𝐵 ≤ 𝐶 , 𝐴 ∩ 𝐶 = 0 

and 𝐶 is isomorphic to a direct summand of 𝑀.  

In this paper, we consider the relationship between CIS-rings and some other well-studied classes of rings, 

and in the articles that (Pardro & Asensio, 1997; Yousif, 1997; Nicholson & Yousif, 1998), we generalized 

all the results obtained with CS-rings to CIS-rings. Gómez Pardo and Guil Asensio proved in (Pardro & 

Asensio, 1997) that if a ring 𝑅 is a right CS-ring, then every direct summand of injective envelope 𝐸(𝑅𝑅) 

has an essential finitely generated projective submodule. We generalize this proposition in Proposition 2.5 

by proving that if 𝑅 is a right CIS-ring, then every direct summand of injective envelope 𝐸(𝑅𝑅) has an 

essential finitely generated projective submodule. As results of Proposition 2.5, we proved in Corollary 2.8 

and 2.9 that FGF and CF conjectures are true when the ring is a CIS-ring. Recall that a ring 𝑅 is quasi-

Frobenius if and only if each right 𝑅-module embeds in a projective module; or equivalently, embeds in a 

free module. A ring 𝑅 is called a right FGF ring if each finitely generated right 𝑅-module embeds in a 

free module. A ring 𝑅 is called a right CF ring if each cyclic right 𝑅-module embeds in a free module. 

Obviously, every right FGF ring is a right CF ring. The converse of this proposition is not true, in general. 

Björk provided in (Björk, 1969) an example which illustrates that there is a left CF ring which is not a left 

FGF ring. Let us recall CF and FGF conjectures:   

    1.  The FGF conjecture: Should a right FGF ring be a QF ring?  

    2.  The CF conjecture: Should a right CF ring be a right artinian ring?  

 Björk (Björk, 1972) and Tolskaya (Tolskaya, 1970) unaware of each other proved that every right 

selfinjective right CF ring is right artinian. In (Pardro & Asensio, 1997), Gómez Pardo and Guil Asensio 

generalize their theorem by proving that every right CS right CF ring is right artinian (please see Jain et al., 

2012, p.113). Now, we extend their result in Corollary 2.8 by proving that every right CIS right CF ring is 
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right artinian. In (Pardro & Asensio, 1997), Gómez Pardo and Guil Asensio also proved that if 𝑅 is a right 

CS right FGF ring, then 𝑅 is QF. We prove in Corollary 2.9 that if 𝑅 is a right CIS right FGF ring, then 

𝑅 is QF. Then, we prove in Theorem 2.10 that a ring 𝑅 is a right Kasch and a left CIS-ring if and only if 

𝑅 is semiperfect left continuous with 𝑆𝑜𝑐(𝑅𝑅) ≤𝑒  𝑅𝑅. In Proposition 2.12, we prove that if 𝑅 is a left 

CIS-ring such that every cyclic right 𝑅-module is torsionless, then 𝑅 is a semiperfect, left continuous ring 

with 𝑠𝑜𝑐(𝑅𝑅) ≤𝑒  𝑅𝑅. In particular, 𝑅 is left finite dimensional. In Proposition 2.13, we prove that let 𝑅 

be a right cogenerator ring: (1) If 𝑅 is a left CIS-ring then 𝑅 is a left continuous and a right selfinjective 

ring (and so is a right PF-ring). (2) If 𝑅 ⊕ 𝑅 is CIS as a left 𝑅-module then 𝑅 is left and right PF. In 

Thorem 2.14, we show that let 𝑅 be a left CIS-ring 𝑅. Then, 𝑅 is a right PF-ring if and only if 𝐽(𝑅) ⊆
𝑍(𝑅𝑅) and every 2-generated right 𝑅-module is torsionless. In Theorem 2.15, we prove that let 𝑅 be a 

left CIS-ring such that every cyclic right 𝑅-module embeds in a free module (i.e., right CF ring). Then, 𝑅 

is QF if and only if 𝐽(𝑅) ⊆ 𝑍(𝑅𝑅); or equivalently, 𝑆𝑜𝑐(𝑅𝑅) ⊆ 𝑆𝑜𝑐(𝑅𝑅); or equivalently, 𝑅  is right 

mininjective. In Theorem 2.19, we prove that a ring 𝑅 is QF if and only if 𝑅 is a right Johns and a left 

CIS-ring; or equivalently, 𝑅 is left P-injective, left CIS-ring and right Noetherian ring; or equivalently, 𝑅 

is left P-injective, left CIS-ring with ACC on left annihilators; or equivalently, 𝑅 is left P-injective, left 

CIS ring and satisfy ACC on right annihilators; or equivalently, 𝑅 is a right CIS-ring and every 2-generated 

right 𝑅-module embeds in a free module; or equivalently, 𝑅 is a left GP-injective, left CIS-ring with ACC 

on essential left ideals. In Theorem 2.20, we prove that a ring 𝑅 is a right Johns, left Kasch ring if and only 

if 𝑅 is a right CIS-ring and a right CF ring. In Theorem 2.21 we prove that a ring 𝑅 is a right CIS-ring 

which is left and right Kasch; if and only if 𝑅 is right Kasch and a right continuous ring; or eqivalently, 𝑅 

is a semiperfect right continuous ring with essential right socle. We prove in Theorem 2.22 that a ring 𝑅 is 

a left and right Kasch left and right CIS-ring if and only if 𝑅 is a left and right CIS-ring, and the dual of 

every simple right 𝑅-module is simple; or equivalently, 𝑅 is semiperfect left and right continuous ring 

with 𝑆𝑜𝑐(𝑅𝑅) = 𝑆𝑜𝑐(𝑅𝑅) essential as a left and as a right 𝑅-module in 𝑅. We show in Theorem 2.25 a 

ring 𝑅 has a perfect duality if and only if or equivalently, 𝑅 is left and right Kasch and 𝑅 ⊕ 𝑅 is a left 

and right CIS-module; or equivalently, the dual of every simple right 𝑅-module is simple and 𝑅 ⊕ 𝑅 is a 

left and right CIS-module; or equivalently, the dual of every simple right 𝐻-module is simple and 𝐻 is a 

right and left CIS-ring, where 𝐻 = 𝑀2(𝑅). At the end of the paper, we prove in Corollary 2.27 a ring 𝑅 is 

quasi-Frobenius if and only if 𝑅 is right and left Kasch and a right countably Σ-CIS-ring. 

Recall from (Smith, 1992) that a module 𝑀 is a UC-module if every submodule has a unique closure; or 

equivalently, the intersection of every pair of complement submodules of 𝑀  is again a complement 

submodule of 𝑀. A module 𝑀 is a C2-module if a submodule 𝐴 of 𝑀 is isomorphic to a direct summand 

of 𝑀, then 𝐴 is the direct summand of 𝑀. A module 𝑀 is called a continuous module if 𝑀 is both a CS 

and a C2-module. A ring 𝑅 is called a right C2-𝑟𝑖𝑛𝑔 (continuous ring) if the module 𝑅𝑅 is a C2-module 

(continuous module). Left C2-rings can be defined similarly.    

The left (right) annihilator of a subset 𝐼 of a ring 𝑅 is denoted 𝑙(𝑋) (r(X)). 𝑀(𝑛) denotes the direct sum 

of 𝑛 copies of 𝑀. By ℤ and ℝ, we denote the ring of integer and real numbers, respectively. ℤ𝑛 will 

denote ℤ/𝑛ℤ. 𝑀𝑛(𝑅) and 𝑆𝑜𝑐(𝑀) denote the 𝑛 × 𝑛 matrix ring over 𝑅 and the socle of a module 𝑀, 

respectively. For any unexplained terminology please refer (Dung et al., 1994; Nicholson & Yousif, 2003). 

2. CIS-MODULES AND RINGS 

Definition 2.1. A module 𝑀 is called a 𝐶𝐼𝑆-𝑚𝑜𝑑𝑢𝑙𝑒 if every complement submodule of 𝑀 is isomorphic 

to a direct summand of 𝑀. A ring 𝑅 is called a 𝑟𝑖𝑔ℎ𝑡 𝐶𝐼𝑆-𝑟𝑖𝑛𝑔 if the module 𝑅𝑅 is a CIS-module. Left 

CIS-rings can be defined similarly. A ring 𝑅 is called a CIS-ring if it is left and right CIS.  

Clearly, uniform, semisimple and CS-modules are CIS-modules. Recall from (Behboodi et al., 2018) that 

a module 𝑀 is a virtually semisimple module if every submodule is isomorphic to a direct summand. 

Clearly, every virtually semisimple module is a CIS-module. 

Example 2.2.  There exist some CIS-modules which are not CS:   

    1.  Let 𝐴 be a commutative principal ideal domain (PID) and 𝑅 = [
𝐴 𝐴
0 𝐴

] the 2 × 2 

generalized triangular matrix ring. 𝑅𝑅 is a CIS-module but not a CS-module.  
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    2.  Let 𝑅 = [
ℤ2 ℤ2

0 ℤ
] be the 2 × 2 generalized triangular matrix ring. 𝑅𝑅 is a not a CS-

module by (Tercan & Yucel, 2015, Example 5.102) but it is CIS.  

Proposition 2.3. If a module 𝑀 is a C2-module, then 𝑀 is CS if and only if 𝑀 is CIS.  

Proof. The necessity is clear. The other direction follows immediately from the definition of the C2-module.  

Corollary 2.4. A module 𝑀 is a continuous module if and only if 𝑀 is both a CIS and a C2-module.  

In this section, we investigate the relationships between CIS-rings and some other important classes 

of rings.  

Gómez Pardo and Guil Asensio proved in (Padro & Asensio, 1997, Theorem 2.5) that, let 𝑅 be a ring and 

𝑃𝑅 a finitely generated projective module such that each direct summand of injective envelope 𝐸 = 𝐸(𝑃𝑅) 

has an essential finitely generated projective submodule and |Ω(𝑅)| ≤ |𝐶(𝑃)|. Then 𝑃𝑅 cogenerates the 

simple right 𝑅-modules and has finite essential socle, where Ω(𝑅) denotes a set of representatives of the 

isomorphism classes of simple right 𝑅-modules, and for a right 𝑅-module 𝑀, 𝐶(𝑀) denotes a set of 

representatives of the isomorphism classes of simple submodules of 𝑀, and |𝑋| denotes the cardinality of 

a set 𝑋. They also proved that if a ring 𝑅 is a right CS-ring, then every direct summand of injective 

envelope 𝐸(𝑅𝑅)  has an essential finitely generated projective submodule. We begin this section by 

generalizing this proposition: 

Proposition 2.5.  If 𝑅 is a right CIS-ring, then every direct summand of injective envelope 𝐸(𝑅𝑅) has 

an essential finitely generated projective submodule.  

Proof. Let 𝑅 be a right CIS-ring and 𝜀: 𝑅𝑅 ↪ 𝐸 the injective envelope of 𝑅𝑅. Let 𝐸0 be a direct summand 

of 𝐸 . Then 𝐴 = 𝑅 ∩ 𝐸0  is essential in 𝐸0 . Moreover, Since 𝑅𝑅  is CIS, 𝐴 is essentially embeds in a 

complement submodule 𝐶 of 𝑀 such that 𝐶 is isomorphic to a direct summand 𝑒𝑅 of 𝑅𝑅. Call 𝜎: 𝐴 →
𝐶 the inclusion. By the injectivity, 𝜎 extends to a homomorphism 𝜃: 𝐶 → 𝐸0.  

  
Then 𝜃 is monomorphism since 𝐴 is essential in 𝐶 and 𝜃|𝐴 = 𝑖. Now, we have 𝐼𝑚(𝜃) ≅ 𝐶 ≅ 𝑒𝑅. Thus, 

𝐼𝑚(𝜃) is a finitely generated projective (indeed, cyclic) submodule of 𝐸0 , which is essential since it 

contains 𝐴.  

A ring 𝑅 is called right cogenerator if every right 𝑅-module is torsionless, and 𝑅 is called a right PF-ring 

(pseudo-Frobenius ring) if it is right cogenerator and right selfinjective; or equivalently, it is semiperfect, 

right selfinjective and 𝑆𝑜𝑐(𝑅𝑅) ≤𝑒 𝑅𝑅 . Osofsky proved in (Osofsky, 1996) that a right injective 

cogenerator ring 𝑅 (i.e., a right PF-ring) has finite essential right socle and is, therefore, semiperfect. In 

(Padro & Asensio, 1997, Corollary 2.7), Gómez Pardo and Guil Asensio generalized Osofsky’s result and 

proved that if a ring 𝑅 is CS and cogenerates the simple right 𝑅-modules, then 𝑅𝑅 has finite essential 

socle. From Proposition 2.5, we obtain the following corollary which generalizes (Padro & Asensio, 1997, 

Corollary 2.7): 

Corollary 2.6.  Let 𝑅 be a ring such that 𝑅𝑅 is CIS and cogenerates the simple right 𝑅-modules. Then 

𝑅𝑅 has finite essential socle.  

In (Padro & Asensio, 1997, Corollary 2.8), the authors proved that a ring 𝑅 is right PF if and only if 𝑅𝑅 is 

a CS cogenerator; or equivalently, 𝑅𝑅 is a cogenerator, and every direct summand of injective envelope 

𝐸(𝑅𝑅) contains an essential finitely generated projective submodule. We obtain in Corollary 2.7, which 

extends (Padro & Asensio, 1997, Corollary 2.8), a characterization of the right PF-rings by strengthening 

the hypothesis of the previous corollary: 

Corollary 2.7.  The following conditions are equivalent for a ring 𝑅:   

    1.  𝑅 is right PF;  

    2.  𝑅𝑅 is a CIS cogenerator;  

    3.  𝑅𝑅 is a cogenerator, and every direct summand of injective envelope 𝐸(𝑅𝑅) contains an 

essential finitely generated projective submodule.  

Proof. (1) ⇒ (2) Since 𝑅 is a right PF-ring then 𝑅𝑅 is a CS cogenerator by (Padro & Asensio, 1997, 
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Corollary 2.8). So, it is CIS. 

(2) ⇒ (3) Clear.  

(1) ⇔ (3) is proved in (Padro & Asensio, 1997, Corollary 2.8). 

Recall that if 𝑅 is a ring such that each cyclic right 𝑅-module has finite essential socle, then it is 

right artinian. In (Padro & Asensio, 1997, Corollary 2.9), the authors proved that if 𝑅 is a right CS-ring 

such that every cyclic right 𝑅-module embeds in a free module, then 𝑅 is right artinian. By Corollary 2.7, 

we have the following corollary which generalizes (Padro & Asensio, 1997, Corollary 2.9): 

Corollary 2.8. Let 𝑅 be a right CIS-ring and every cyclic right 𝑅-module embeds in a free module (i.e, 

right CF ring). Then 𝑅 is right artinian.  

In (Padro & Asensio, 1997, Corollary 2.10), the authors proved that if 𝑅 is a right FGF ring and every 

direct summand of the injective envelope 𝐸(𝑅𝑅)  contains an essential finitely generated projective 

submodule, then 𝑅 is QF. Now, we can state the following corollary:  

Corollary 2.9. If 𝑅 is a right CIS right FGF ring, then 𝑅 is QF.  

A ring 𝑅 is called right Kasch if every simple right 𝑅-module embeds in 𝑅; or equivalently, 𝑙(𝐴) ≠ 0 for 

every maximal right ideal 𝐴 of 𝑅. Nicholson and Yousif proved in (Nicholson & Yousif, 2003, Theorem 

4.10) that 𝑅  is a right Kasch and a left CS-ring if and only if 𝑅  is semiperfect left continuous with 

𝑠𝑜𝑐(𝑅𝑅) ≤𝑒  𝑅𝑅. The next theorem extends (Nicholson & Yousif, 1998, Lemma 2.3) and (Nicholson & 

Yousif, 2003, Theorem 4.10).  

Theorem 2.10. A ring 𝑅 is a right Kasch and a left CIS-ring if and only if 𝑅 is semiperfect left continuous 

with 𝑆𝑜𝑐(𝑅𝑅) ≤𝑒  𝑅𝑅.  

Proof. (⇒: ) Every right Kasch ring is a left C2-ring by (Yousif, 1997, Lemma 1.15). Then, by Proposition 

2.3, 𝑅 is a left CS-ring. The rest is follows by (Nicholson & Yousif, 2003, Theorem 4.10). 

(⇐: ) Clear by (Nicholson & Yousif, 2003, Theorem 4.10). 

The next corollary generalizes (Nicholson & Yousif, 2003, Corollary 4.13). 

Corollary 2.11. The following conditions are equivalent for a ring 𝑅:   

    1.  𝑅 is a left CIS, left and right Kasch ring;  

    2.  𝑅 is a semiperfect left continuous ring with essential left socle.  

Proof. (1) ⇒ (2) 𝑅 is semiperfect and left continuous by Theorem 2.10. Since 𝑅 is also left Kasch, it 

follows from (Nicholson & Yousif, 2003, Lemma 4.5) that 𝑆𝑜𝑐(𝑅𝑅) ≤𝑒  𝑅𝑅. 

(2) ⇒ (1) It follows from (Nicholson & Yousif, 2003, Lemma 4.11(4)). 

A right 𝑅-module 𝑀 is called torsionless if 𝑀 is embedded in a direct product of copies of 𝑅. 

Recall that if 𝐴 is a right ideal of 𝑅, then 𝑅/𝐴 is torsionless as a right 𝑅-module; or equivalently, 𝑟𝑙(𝐴) =
𝐴. In (Nicholson & Yousif, 1998, Proposition 2.4), the Nicholson and Yousif showed that if 𝑅 be a left 

CS-ring such that every cyclic right 𝑅-module is torsionless, then 𝑅 is a semiperfect, left continuous ring 

with 𝑠𝑜𝑐(𝑅𝑅) ≤𝑒  𝑅𝑅 . In particular, 𝑅  is left finite dimensional. The next proposition generalizes 

(Nicholson & Yousif, 1998, Proposition 2.4).  

Proposition 2.12. Let 𝑅 be a left CIS-ring such that every cyclic right 𝑅-module is torsionless. Then 𝑅 is 

a semiperfect, left continuous ring with 𝑠𝑜𝑐(𝑅𝑅) ≤𝑒  𝑅𝑅. In particular, 𝑅 is left finite dimensional.  

 Proof. We have 𝑟𝑙(𝐴) = 𝐴 for every right ideal 𝐴 because 𝑅/𝐴 is torsionless. In particular, 𝑅 is right 

Kasch and so is left continuous with 𝑠𝑜𝑐(𝑅𝑅) ≤𝑒  𝑅𝑅 by Theorem 2.10. Furthermore, since 𝑅 is left CS, 

then every complement left ideal is a summand, and so is principal. Thus, 𝑅 is semiperfect by (Nicholson 

& Yousif, 1998, Lemma 2.2), so write 𝑅 = 𝑅𝑒1 ⊕. . .⊕ 𝑅𝑒𝑛, where each 𝑒𝑖, is a local idempotent. Then 

each 𝑅𝑒𝑖 is a CS-module and so is uniform. So, 𝑅 is left finite dimensional.  

Gómez Pardo and Guil Asensio proved in (Pedro & Asensio, 1997) that, if 𝑅 be a right cogenerator ring, 

right CS then it is right selfinjective, or in other words, 𝑅 is a right PF-ring (i.e., 𝑅 is right cogenerator, 

right selfinjective) if and only if 𝑅 is a right cogenerator, right CS-ring. Then, we proved in Corollary 2.7 

that 𝑅 is a right PF-ring if and only if 𝑅 is a right cogenerator, right CIS-ring. Hereby, Corollary 2.7 

extends all the known results on the subject. On the other hand, recall from (Faith, 1976) that a ring 𝑅 is 

left and right PF if and only if 𝑅 is right cogenerator, left selfinjective. Therefore, it is natural to ask that 

whether the result of Gómez Pardo and Guil Asensio can be obtained if the right CS-condition by the left 

CS-condition are replaced. Nicholson and Yousif gave an affirmative answer to this question in ((Nicholson 

& Yousif, 1998, Proposition 2.5), and now we extend Nicholson and Yousif’s result in the following 
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proposition: 

Proposition 2.13. Let 𝑅 be a right cogenerator ring, then:  

    1.  If 𝑅 is a left CIS-ring then 𝑅 is a left continuous and a right selfinjective ring (and so is 

a right PF-ring).  

    2.  If 𝑅 ⊕ 𝑅 is CIS as a left 𝑅-module then 𝑅 is left and right PF.  

 Proof. (1) 𝑅  is a semiperfect, left continuous ring by Proposition 2.12. In particular 𝑅  has a finite 

number of isomorphism classes of simple right (and left) 𝑅-modules. Since 𝑅 is a right cogenerator ring, 

𝑅 is a right selfinjective ring by (Faith, 1976, Proposition 24.9). So, 𝑅 is right PF. 

(2) 𝑅  is a left continuous ring by (1). Then it is a left selfinjective ring by (Yousif, 1997, 

Proposition 1.21). Thus 𝑅 is left PF, and hence it is right PF by (1).  

In (Nicholson & Yousif, 1998, Theorem 2.8), the Nicholson and Yousif proved that let 𝑅 be a left 

CS-ring. Then 𝑅 is a right PF-ring if and only if 𝐽(𝑅) ⊆ 𝑍(𝑅𝑅) and every 2-generated right 𝑅-module is 

torsionless. The next theorem extends (Nicholson & Yousif, 1998, Theorem 2.8). 

Theorem 2.14. The following conditions are equivalent for a left CIS-ring 𝑅:   

    1.  𝑅 is a right PF-ring;  

    2.  𝐽(𝑅) ⊆ 𝑍(𝑅𝑅) and every 2-generated right 𝑅-module is torsionless.  

Proof. (1) ⇒ (2) is proved in [3, Theorem 2.8]. 

(2) ⇒ (1) By Proposition 2.12, 𝑅 is a semiperfect, left continuous ring with 𝑆𝑜𝑐(𝑅𝑅) ≤𝑒  𝑅𝑅. 

So, 𝑅 is a left CS-ring. Now, the proof is clear by (Nicholson & Yousif, 1998, Theorem 2.8). 

Recall from (Anderson & Fuller, 1974) that a right artinian ring 𝑅 is QF if and only if 𝑆𝑜𝑐(𝑅𝑅) = 𝑆𝑜𝑐(𝑅𝑅) 

and 𝑆𝑜𝑐(𝑒𝑅) and 𝑆𝑜𝑐(𝑅𝑒) are simple for every local idempotent 𝑒 of 𝑅. Recall that we proved Corollary 

2.8 in that if 𝑅 is a right CIS-ring and every cyclic right 𝑅-module embeds in a free module, then 𝑅 is 

right artinian. A ring 𝑅 is called right mininjective if each 𝑅-homomorphism from a simple right ideal to 

𝑅 is given left multiplication (Nicholson & Yousif, 1997). 

Theorem 2.15. Let 𝑅 be a left CIS-ring such that every cyclic right 𝑅-module embeds in a free module 

(i.e., right CF ring). The following conditions are equivalent:   

    1.  𝑅 is QF;  

    2.  𝐽(𝑅) ⊆ 𝑍(𝑅𝑅);  

    3.  𝑆𝑜𝑐(𝑅𝑅) ⊆ 𝑆𝑜𝑐(𝑅𝑅);  

    4.  𝑅 is right mininjective.  

Proof. (1) ⇒ (2) Clear because 𝑅 is right selfinjective.  

(2) ⇒ (3)  𝑅  is semiperfect by Proposition 2.12, and hence 𝑟(𝐽) = 𝑆𝑜𝑐(𝑅𝑅) . From (2) 

𝑆𝑜𝑐(𝑅𝑅) ⊆ 𝑟[𝑍(𝑅𝑅)] ⊆ 𝑟(𝐽) = 𝑆𝑜𝑐(𝑅𝑅). 

(3) ⇒ (1) It can easily be see that 𝑆𝑜𝑐(𝑅𝑅) ≤𝑒  𝑅𝑅 by Proposition 2.12. Therefore, 𝑆𝑜𝑐(𝑅𝑅) ⊆
𝑆𝑜𝑐(𝑅𝑅). So, 𝑆𝑜𝑐(𝑅𝑅) = 𝑆𝑜𝑐(𝑅𝑅) by (3). Now, 𝑅 is semiperfect by Proposition 2.12, Thus, we write 

𝑅 = 𝑅𝑒1 ⊕. . .⊕ 𝑅𝑒𝑛 where {𝑒1, . . . , 𝑒𝑛} is a complete set of local orthogonal idempotents. Moreover 𝑅 

is left continuous by Proposition 2.12. Then, 𝑅 is a left CS-ring. The rest follows by (Nicholson & Yousif, 

1998, Theorem 2.9).  

(4) ⇒ (3) It is immediate by (Nicholson & Yousif, 1997, Theorem 1.14).  

(3) ⇒ (4) It is obvious because of (3) ⇒ (1).  

 Corollary 2.16. [Nicholson & Yousif, 1998, Theorem 2.9] If 𝑅 is a left CS-ring such that every cyclic 

right 𝑅 -module embeds in a free module then the conditions from (1)  to (4)  in Theorem 2.15 are 

equivalent.  

A ring 𝑅 is called a right weakly continuous ring if 𝑅 is semiregular and 𝐽 = 𝑍𝑟. Recall from (Nicholson 

& Yousif, 2003, Theorem 1.35) that 𝑅  is right self-injective if and only if 𝑅 ⊕ 𝑅  is continuous 

(equivalently quasi-continuous) as a right 𝑅-module. The following theorem generalizes (Nicholson & 

Yousif, 2003, Corollary 7.41). 

Theorem 2.17. The following are equivalent for a ring 𝑅:   

    1.  𝑅 is right self-injective;  

    2.  (𝑅 ⊕ 𝑅)𝑅 is a CIS-module and a C2-module;  

    3.  𝑅 is right weakly continuous and (𝑅 ⊕ 𝑅)𝑅 is a CIS-module.  

 Proof. (1) ⇒ (3) clear by (Nicholson & Yousif, 2003, Corollary 7.41). 
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(3) ⇒ (2) If 𝑅 is right weakly continuous, so also is 𝑀2(𝑅) ≅ 𝐸𝑛𝑑(𝑅 ⊕ 𝑅) by (Nicholson & 

Yousif, 2003, Theorem 7.40). In particular 𝐸𝑛𝑑(𝑅 ⊕ 𝑅) is a right C2-ring, and this implies that 𝑅 ⊕ 𝑅 

is C2 by (Nicholson & Yousif, 2003, Theorem 7.15). 

(2) ⇒ (1) is a consequence of Proposition 2.3 and (Nicholson & Yousif, 2003, Theorem 7.15).  

A ring 𝑅 is called a left 𝑃-𝑖𝑛𝑗𝑒𝑐𝑡𝑖𝑣𝑒 𝑟𝑖𝑛𝑔 if every homomorphism from a principal left ideal 𝑅𝑡 to 𝑅 

can be extended to one from  𝑅𝑅 to  𝑅𝑅. Recall that a ring 𝑅 is called a left C2-ring if every left ideal 

that is isomorphic to a direct summand of  𝑅𝑅 is also a direct summand of  𝑅𝑅. Every left P-injective 

ring is a left C2-ring (Nicholson & Yousif, 2003, Proposition 5.10). Recall from (Chen & Li, 2004, Theorem 

2.21) that if 𝑅 is left P-injective, left CIS and right noetherian, then 𝑅 is QF. The next theorem generalizes 

(Chen & Li, 2004, Theorem 2.21). 

Theorem 2.18. If 𝑅 is left P-injective, left CIS and right noetherian then 𝑅 is QF.  

Proof. Clear by Proposition 2.3 because every left P-injective ring is left C2.  

Nicholson and Yousif proved in (Nicholson & Yousif, 1998, Theorem 3.2) that 𝑅 is QF if and only if 𝑅 

is a right Johns, left CS-ring. The next theorem generalizes (Nicholson & Yousif, 1998, Theorem 3.2), 

(Nicholson & Yousif, 1998, Theorem 3.4), (Chen et al., 2006, Theorem 10) and (Chen et al., 2006, 

Corollary 4).  

Theorem 2.19. The following are equivalent for a ring 𝑅:   

    1.  𝑅 is QF;  

    2.  𝑅 is a right Johns and a left CIS-ring;  

    3.  𝑅 is left P-injective, left CIS-ring and right Noetherian ring;  

    4.  𝑅 is left P-injective, left CIS-ring with ACC on left annihilators;  

    5.  𝑅 is left P-injective, left CIS ring and satisfy ACC on right annihilators;  

    6.  𝑅 is a right CIS-ring and every 2-generated right 𝑅-module embeds in a free module;  

    7.  𝑅 is a left GP-injective, left CIS-ring with ACC on left annihilators.  

Proof. (1) ⇒ (2) Since 𝑅 is QF, then 𝑅 is a right Johns and a left CIS-ring by (Nicholson & Yousif, 1998, 

Theorem 3.2). 

(2) ⇒ (3) Clear because every right Johns ring is right noetherian left P-injective.  

(3) ⇒ (1) 𝑅 is QF by Theorem 2.18.  

(1) ⇒ (4) Clear by (Chen et al., 2006, Corollary 4).  

(4) ⇒ (3) Since 𝑅 is a left P-injective ring (so is GP-injective) with ACC on left annihilators, 

then 𝑅 is right Artinian by (Chen & Ding, 1999, Theorem 3.7), and hence it is right Noetherian. 

(1) ⇒ (5) Clear by (Chen et al., 2006, Theorem 10).  

(5) ⇒ (1) Since 𝑅 is left CIS and left P-injective, then 𝑅 is left CS. So, proof is clear by (Chen 

et al., 2006, Theorem 10). 

(1) ⇒ (6) Clear by (Nicholson & Yousif, 1998, Theorem 3.4). 

(6) ⇒ (1) By Proposition 2.8, 𝑅 is a right artinian ring, and hence semiperfect with essential left 

socle. Then 𝑅 is QF by (Nicholson & Yousif, 1998, Theorem 3.4(5)). 

(4) ⇒ (7) Clear because every left P-injective ring is left GP-injective.  

(7) ⇒ (1) Since 𝑅  is a left GP-injective ring with ACC on left annihilators, then 𝑅  is right 

Artinian by (Chen & Ding, 1999, Theorem 3.7), and hence it is right Noetherian. Now we want to show 

that every complement left ideal is left annihilator. Let 𝐶 be a complement left ideal of 𝑅. Since 𝑅 is left 

CIS, then there exist some 𝑒2 = 𝑒 ∈ 𝑅 such that 𝑒𝑅 ≅ 𝐶. Since 𝑒𝑅 is left annihilator and 𝑒𝑅 ≅ 𝐶, then 

𝐶 is a left annihilator. By (Chen et al., 2006, Theorem 3), 𝑅 is QF.  

The next theorem extends (Nicholson & Yousif, 2003, Theorem 8.9).  

Theorem 2.20. The following conditions are equivalent:   

    1.  𝑅 is a right Johns, left Kasch ring; 

    2.  𝑅 is a right CIS-ring and a right CF ring.  

Proof. (1) ⇒ (2) Clear by (Nicholson & Yousif, 2003, Theorem 8.9). 

(2) ⇒ (1) 𝑅 is right finitely cogenerated by (Nicholson & Yousif, 2003, Corollary 7.32) because 

it is right Kasch (being a right CF ring). Since 𝑅 is right CF then every cyclic right 𝑅-module is finitely 

cogenerated. This implies that 𝑅 is right artinian by Vámos’ lemma (Nicholson & Yousif, 2003, Lemma 

1.52), and so 𝑆𝑜𝑐(𝑅𝑅) ≤𝑒 𝑅𝑅 (as 𝑅 is semiprimary).  

The following theorem generalizes (Yousif, 1997, Theorem 1.16).  
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Theorem 2.21. The following conditions are equivalent for a ring 𝑅:   

    1.  𝑅 is a right CIS-ring which is left and right Kasch;  

    2.  𝑅 is right Kasch and a right continuous ring;  

    3.  𝑅 is a semiperfect right continuous ring with essential right socle.  

Proof. (1) ⇒ (2) By (Yousif, 1997, Lemma 1.15), 𝑅 is a right C2-ring. By Corollary 2.4, 𝑅 is right 

continuous. 

(2) ⇒ (1) Clear by (Yousif, 1997, Theorem 1.16).  

(2) ⇔ (3) is proved in (Yousif, 1997, Theorem 1.16).  

The following theorem generalizes (Yousif, 1997, Theorem 1.17). We should point out that we use 

same technic used in (Yousif, 1997, Theorem 1.17) to proof the following theorem.  

Theorem 2.22. The following conditions are equivalent for a ring 𝑅:   

    1.  𝑅 is a left and right Kasch left and right CIS-ring;  

    2.  𝑅 is a left and right CIS-ring, and the dual of every simple right 𝑅-module is simple;  

    3.  𝑅 is semiperfect left and right continuous ring with 𝑆𝑜𝑐(𝑅𝑅) = 𝑆𝑜𝑐(𝑅𝑅) essential as a 

left and as a right 𝑅-module in 𝑅.  

 Proof. (3) ⇒ (1) Clear by (Yousif, 1997, Theorem 1.17).  

(1) ⇒ (3) By (Yousif, 1997, Lemma 1.15), 𝑅 is a right C2-ring. By Proposition 2.3, 𝑅 is a right 

CIS-ring. The proof follows by (Yousif, 1997, Theorem 1.17).  

(3) ⇒ (2) Clear by (Yousif, 1997, Theorem 1.17).  

(2) ⇒ (3) It is known that if the dual of every simple right 𝑅-module is simple, then 𝑅 is a right 

Kasch ring. By (Yousif, 1997, Lemma 1.15), 𝑅 is a left C2-ring. Then, by Corollary 2.4, 𝑅 is a left 

continuous ring and hence semiregular by (Utumi, 1965). Now, since 𝑅 is right Kasch and a right CIS-ring, 

then 𝑅 has a finitely generated essential right socle, in particular 𝑅 has no infinite sets of orthogonal 

idempotents by Proposition 2.6. Thus, 𝑅  is semiperfect, and 𝑆𝑜𝑐(𝑅𝑅) ⊆ 𝑆𝑜𝑐(𝑅𝑅) . If e is a local 

idempotent of 𝑅, then (𝑒𝑅/𝑒𝐽)∗ ≅ 𝑙(𝐽). 𝑒 = 𝑆𝑜𝑐(𝑅𝑅). 𝑒 is a simple left 𝑅-submodule of 𝑅𝑒. Since 𝑅 is 

a left continuous ring then 𝑅 is left CS. Thus, we have 𝑆𝑜𝑐(𝑅𝑅). 𝑒 ≤𝑒 𝑅𝑒, for every local idempotent 𝑒 

of 𝑅. It implies that 𝑆𝑜𝑐(𝑅𝑒) = 𝑆𝑜𝑐(𝑅𝑅). 𝑒 is simple and essential in 𝑅𝑒, for every local idempotent 𝑒 of 

𝑅. Therefore, 𝑆𝑜𝑐(𝑅𝑅) = 𝑆𝑜𝑐(𝑅𝑅) is essential as a left as well as a right 𝑅-module in 𝑅. By (Nicholson 

& Yousif, 1997, Lemma 4.16), 𝑅 is left Kasch, and by (Yousif, 1997, Lemma 1.15), 𝑅 is right continuous.  

Theorem 2.23. Let 𝑀 be a left 𝑅-module, where 𝑅 = 𝑅𝑒𝑅 for some idempotent 𝑒 ∈ 𝑅 and 𝑆 = 𝑒𝑅𝑒. 

Then:   

    1.  The left 𝑅-module 𝑀 is a CIS-module if and only if the left 𝑆-module 𝑒𝑀 is a CIS-

module.  

    2.  𝑅𝑅 is CIS if and only if the 𝑒𝑅𝑒-module 𝑅𝑒 is CIS.  

 Proof. It can easily be proved routinely with using (Tercan & Yucel, 2015, Lemma 2.76 and Proposition 

2.77).  

Theorem 2.24. 𝑀𝑛(𝑅) is CIS if and only if the free right 𝑅-module 𝑅𝑛 is CIS.  

Proof. The result follows immediately by Theorem 2.23 but note that 𝑀𝑛(𝑅) = 𝑀𝑛(𝑅)𝑒𝑀𝑛(𝑅), where 𝑒 

is the matrix unit with 1 in the (1,1)th position and zero elsewhere.  

The next theorem generalizes (Yousif, 1997, Theorem 1.18).  

Theorem 2.25. The following conditions are equivalent for a ring 𝑅:   

    1.  𝑅 has a perfect duality;  

    2.  𝑅 is left and right Kasch and 𝑅 ⊕ 𝑅 is a left and right CIS-module;  

    3.  The dual of every simple right 𝑅-module is simple and 𝑅 ⊕ 𝑅 is a left and right CIS-

module;  

    4.  The dual of every simple right 𝐻-module is simple and 𝐻 is a right and left CIS-ring, 

where 𝐻 = 𝑀2(𝑅).  

  

Proof. (1) ⇒ (2), (1) ⇒ (3) and (1) ⇒ (4) clear by (Yousif, 1997, Theorem 1.18).  

(2) ⇒ (1) By (Yousif, 1997, Lemma 1.15) and Corollary 2.4, 𝑅 is left and right continuous, so 𝑅 

is semiregular with 𝐽(𝑅) = 𝑍(𝑅𝑅) = 𝑍(𝑅𝑅) by (Utumi, 1965). Then by (Yousif, 1997, Lemma 1.1), 𝑅 ⊕
𝑅 is left and right continuous as an 𝑅-module. By (Mohamed & Muller, 1990, Proposition 2.10) 𝑅 is left 

and right self-injective ring. By Osofky’s well known result (Osofsky, 1996), 𝑅 has a perfect duality.  
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(3) ⇒ (4) By Theorem 2.24, 𝐻 = 𝑀2(𝑅) is a left (right) CIS-ring if and only if 𝑅 ⊕ 𝑅 is a left 

(right) CIS-module. By Theorem 2.22 and (Yousif, 1997, Lemma 1.2), 𝑅 is a left (right) Kasch and left 

(right) mininjective ring. By Morita invariance, 𝐻 is left (right) Kasch, and by (Nicholson & Yousif, 1997, 

Proposition 1.4), 𝐻 is left (right) mininjective. Therefore, the dual of every simple right (left) 𝐻-module 

is simple by (Nicholson & Yousif, 1997, Proposition 2.2). 

(4) ⇒ (1) By Theorem 2.22, 𝐻 is semiperfect left and right continuous ring with 𝑆𝑜𝑐(𝐻𝐻) =
𝑆𝑜𝑐(𝐻𝐻) essential as a left and as a right 𝐻-module. By (Nicholson & Yousif, 1997, Lemma 3.17) and 

(Utumi, 1965, Corollary 7.5), 𝑅 has a perfect duality.  

Corollary 2.26. Suppose 𝑅 is a left Kasch ring and 𝛱𝑅 is an arbitrary direct product of at least two copies 

of 𝑅. Then the following conditions are equivalent:   

    1.  𝛱𝑅 is a right CIS-ring;  

    2.  𝛱𝑅 is injective as a right R-module.  

Proof. (1) ⇒ (2) Since 𝑅 ⊕ 𝑅 is a right CIS-module, it is right continuous by (Yousif, 1997, Lemmas 

1.1 and 1.15), and so 𝑅 is right self-injective. So, Π𝑅 is injective as a right 𝑅-module. 

(2) ⇒ (1) Obvious.  

We called a ring 𝑅 is a right (countably) Σ-𝐶𝐼𝑆-𝑟𝑖𝑛𝑔 if every direct sum of arbitrary (countably) 

many copies of 𝑅 is CIS as a right 𝑅-module. 

Corollary 2.27. A ring 𝑅 is quasi-Frobenius if and only if 𝑅 is right and left Kasch and a right countably 

𝛴-CIS-ring.  

Proof. Necessity is clear. For the converse let 𝑅 be left Kasch and (𝑅 ⊕ 𝑅)𝑅 be a CIS-module. Then by 

(Yousif, 1997, Lemmas 1.1 and 1.15), 𝑅 is a right self-injective ring. Thus 𝑅 is a semiperfect ring by 

(Osofsky, 1996). By (Dung et al., 1994, Corollary 8.11), 𝑅 is right countably Σ-injective. So, 𝑅 is quasi-

Frobenius by (Faith, 1966).  
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Tóm tắt. Trong bài báo này chúng tôi giới thiệu một mở rộng của điều kiện CS nổi tiếng. Chúng tôi gọi 

một R-môđun M là CIS-môđun nếu mọi phần bù của nó đều đẳng cấu với một hạng tử trực tiếp. Chúng tôi 

chứng minh được rằng nếu R là một vành FGF phải CIS phải, thì R là vành tựa Frobenius, và nếu R là vành 

CF phải CIS phải thì R là vành Arin phải. Tính chất mới của vành tựa Frobenius được đưa ra bằng cách sử 

dụng các vành CIS. Hơn nữa, nhiều mệnh đề quan trọng liên quan đến vành CS được mở rộng thành vành 

CIS cũng được chúng tôi trình bày. 

Từ khóa. CIS-môđun, vành CIS, vành tựa Frobenius, vành CF, vành FGF. 
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