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Abstract. This article presents a finite element method for static bending analysis of the functionally 

graded porous (FGP) L-shape nanoplate resting on the elastic foundation (EF) using the nonlocal elasticity 

theory. The FGP materials with two-parameter are the volume fraction index (k) and the porosity volume 

fraction (ξ) in two cases of even and uneven porosity. The EF includes Winkler-stiffness (k1) and Pasternak-

stiffness (k2). Some numerical results of the proposed method are compared with those of published works 

to verify accuracy and reliability. Furthermore, the effects of some elastic foundation factors and material 

properties of static bending of FGP nanoplates resting on the EF are studied in detail. 
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1 INTRODUCTION 

Nowadays, with the sophisticated development of science and technology, the investigation of 

nanostructures has been deeply concerned by scientists in the world. They are applied to many fields such 

as bio-engineering, nano-electromechanical devices and actuators, etc due to their exceptional mechanical, 

thermal, and electrical properties. 

In order to calculate for nano-structures, many theories have been proposed such as the modified couple 

stress theory [1], the strain gradient theory [2], and the nonlocal theory [3], [4]. Among these theories, the 

nonlocal theory is used popularly in the literature for simplicity and accuracy. For example, Li et al. [5] 

developed a new nonlocal model to solve the static and dynamic problems for circular elastic nano-solids. 

Ansari et al. [6], [7] used nonlocal theory to consider the free vibration of a single-layered graphene plate. 

In [7], Arash and co-workers commented about nonlocal theory in modelling carbon nanotubes and 

graphene. Farajpouret al. [8] studied thermomechanical vibration of graphene plates including surface 

effects by decoupling the nonlocal elasticity equations. Jalali et al. [9] used molecular dynamics combining 

with nonlocal elasticity approaches to investigate the effect of out-of-plane defects on vibration analysis of 

graphene. In addition, the nonlocal theory employed to investigate the various performances of nanoplates 

is also shown in [10]. 

With analysis of nanostructures resting on EF, some typical work as Wang and Li [11] computed the static 

bending of the nanoplates resting on the EF. Narendar and Gopalakrishnan et al. [12] studied the wave 

dispersion of a single-layered graphene sheet embedded in an elastic polymer matrix. Pouresmaeeli et al. 

[13] investigated the vibration behaviors of nanoplates placed on a viscoelastic medium. Sobhy [14] used 

an analytical method (AM) based on nonlocal theory to examine static bending, free vibration, mechanical 

buckling, and thermal buckling of functionally graded material (FGM) nanoplates lying on the EF.  

The FGP material is a form of FG material with the appearance of internal porosity. Most studies are shown 

that the increase of the porosity leads to reduce the stiffness of structures. However, with outstanding 

features such as lightweight, excellent energy-absorbing capability, great thermal resistant properties, etc., 

they have been widely applied in many fields including aerospace, automotive industry, and civil 

engineering. Some typical works studying FGP structure can be found in the literature [15]-[19]. Recently, 

FGP materials have been also used for nanostructures, numerical results on mechanical behavior analysis 

of nanostructures are provided in documents [20]-[24]. In these studies, they mainly use analytical methods 
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and thus are limited in complex problem models and different boundary conditions. So it motivated us to 

develop an efficient numerical method to fill this gap. 

From the analysis of the above literature, according to the best of the authors’ knowledge, the static bending 

analysis of FGP L-shape nanoplates resting on EF has been not published yet. In this work, we use the 

eight-node quadrilateral (Q8) element combining with the nonlocal theory to accurately describe the stress-

strain and displacement field of the FGP L-shape nanoplate resting on the EF. The accuracy and reliability 

of the current method are verified by performing an example to compare the obtained results with those 

available in the previously published literature. Moreover, the effects of geometry parameters and material 

properties on the static bending of FGP nanoplates are examined in detail. 

2 GOVERNING EQUATIONS 

2.1 The FGP L-shape nanoplates 

As it is known, L-shape structures with the advantage of saving space, flexibly arranging components in a 

small space. They are being applied in electronic devices such as CPUs, GPUs, etc. In this study, we 

consider FGP L-shape nanoplates with geometrical parameters as shown in Fig. 1. 
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Fig. 1. The FGP L-shape nanoplate resting on the EF. 

(a) L-shaped nano-plate, (b) Even porosity, (c) Uneven porosity 

The FGP materials with the variation of two constituents and two different distributions of porosity through-

thickness are presented as [25]: 
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with 𝑃 represents the effective material properties such as Young’s modulus 𝐸, mass density 𝜌 and 

Poisson’s ratio 𝜐. the Case 1, case 2 are respectively the modified mixture rule for the two components with 

even porosity and uneven porosity. Symbols “m” and “c” denote the typical material properties at the 

bottom (metal) and top surfaces (ceramic) of the nanoplate, respectively; k is the volume fraction index 

while  ( 1  ) represents the porosity volume fraction. 

2.2 Nonlocal elasticity theory 

According to the nonlocal theory, the stress-strain relation is determined by [4]: 

  21   σ Q

           

(3) 
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in which: 
2

0( )e l   is a nonlocal factor ( 0 4  ), l  is an internal characteristic length and 
0e  is a 

constant, Q  is the stress tensor at a point which is calculated follows the local theory, 
2 2

2

2 2x y

 
  

 
is 

the Laplacian operator and thus the small-scale effect depends on the atomic and/or molecular 

mechanical/electrical/chemical characteristics are taken into account. Note that, when 0l  ( 0)  , the 

nonlocal theory will become the classical plate theory. 

2.3 The displacement fields 

Based on the first-order shear deformation theory (FSDT), the displacement field of the FGP nanoplate is 

given by: 
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with 
0 0 0, ,wu v  are the displacement components at the mid-plane (z = 0) along x, y, z-axis; ,x y 

 
are the 

angle of rotation of the middle surface via the y and x-axis, respectively. 

2.4 The strain vectors 

The strain vector of the plate is defined by [12]: 
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Rewritten in shortened form as follows: 
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2.5 The stress-strain relation 

Following Hooke’s law, the stress tensor at any point of nanoplates is determined by: 
 

 Q = D.ε  (7) 
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The equation represents the relationship between the internal forces and the deformation components 

are written in the form: 
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where ; ; ; s
A B H A  are determined as follows 

  
h/2 h/2

2

b s

/2 /2

5
; ; .(1; ; )d ; .d

6

s

h h

z z z z
 

  A B H D A D  (11) 

2.6 The plate element 

We use the eight-node plate element each node has five degrees of freedom (DOF). The nodal displacement 

vector can be defined as follows: 
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The displacements at the node ( 1 8)i i    of the element are expressed as 
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The displacements field in the plate element is interpolated through the displacement node as 
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The matrices  (j) 1 5iN j   are given by 
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where 
i ψi is the Lagrange interpolation function. 

The element stiffness matrix is determined by 
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The element force vector is given as follows:  2

e 1 T

w

S

p dS  F N   (22) 

where 

  

 
1 8[0 0 0 0,...,0 0 0 0]w N NN  (23) 

For the static problem:    

 K.q = F  (24) 

                                                                                        

in which , ,K F q are the global stiffness matrix, the global force vector, and the global displacement vector. 

They are gathered from the element stiffness matrix, the element force vector, and the element displacement 

vector. 

3 VERIFICATION PROBLEM 

In this section, based on the finite element formula established in section 3, the authors code a calculation 

program in Matlab software. Then, an example is performed to verify the reliability of the calculation 

program. 

 For that purpose, we consider fully simply supported (FSS) FGM nanoplates with geometry parameters: 

a=b=10 nm, h=a/10; and material properties: metal (Al) E1=70 GPa; ceramic (Al2O3) E2=380 GPa, and 

υ=0.3 is fixed. Herein, dimensionless quantities are introduced by 
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Table 1. The displacement and stress of FGM nanoplates resting on the EF (k=0, K2=0). 

Method K1 
0   4   

*w  *

xx  
*w  *

xx  

[14] 
0 2.9603 19.9550 5.2977 35.7108 

100 2.3290 15.6991 3.5671 24.0455 

Present 
0 2.9600 19.8990 5.2971 35.6106 

100 2.3288 15.6555 3.5669 23.9791 

As exhibited in Table 1, the present results are very in agreement with those of Sobhy [14] using Navier’s 

solution. Note that, Navier’s solution can only be applied to nanoplates with simply supported boundary 

conditions. From the above example, it is possible to confirm the accuracy and reliability of the calculation 

program. 

4 NUMERICAL RESULTS 

Firstly, the FGP L-shape nanoplates (as Fig. 1) with geometry parameters and material properties as in 

section 3. The FGP L-shape nanoplate is subjected to uniformly load p0 in perpendicular directions. The 

deformation field of the FSS FGP L-shape nanoplate is indicated in Fig. 2a. The stresses of A-point with 

coordinates (5, 5.625) through the thickness of the FGP L-shape nanoplate is presented in Fig. 2c, 2d. There 

is a difference in the stress distribution at a point along the thickness of the nanoplate in two cases because 

the stiffness of the nanoplate changes in each case according to different laws depending on the variable z. 
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a) The deformation field 

 
b) The top view deformation field 

 

c) The stress  
*

xx  at A-point 

 
d) The stress *

xy at A-point 

Fig. 2. The deformation and stresses of the FSS FGP L-shape nanoplate 

(k=5, 0.2  , 4  , K1=100, K2=10). 

4.1 Effect of the volume fraction index k 

Secondly, the volume fraction index k gets values from 0 to 100. The FSS FGP L-shape nanoplate with 

porosity volume fraction 0.2  , nonlocal factor 4  . The stiffness of foundation: K1=100, K2=10. From 

Fig. 3, it can be seen that when k increases lead to the displacement of nanoplates increase due to the 

stiffness of nanoplates decrease. We also find that the displacement of the FGP L-shape nanoplate decreases 

rapidly when k is in the range 0-20 and the displacement of the nanoplate with porosity distribution in case 

2 is smaller than those of case 1 because the stiffness of the case 2 is larger than the stiffness of case 1.  This 

can be easily obtained when comparing Eq. (1) and Eq. (2). 

 

Fig. 3. The maximum displacement of the FSS 

FGP L-shape nanoplate versus volume fraction 

index k. 

 

Fig. 4. The maximum displacement of the FSS 

FGP L-shape nanoplate versus nonlocal factor

 . 

4.2 Effect of the nonlocal factor µ 

Next, the authors choose the nonlocal factor in range 0 4   with 0  is the classical plate. The FSS FGP 
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L-shape nanoplate with porosity volume fraction 0.2  , volume fraction index k=5. The stiffness of 

foundation: K1=100, K2=10. It can be found that when the nonlocal factor  increases lead to displacement 

increase due to the nonlocal factor makes reduce the stiffness of the FGP L-shape nanoplate (see Fig. 4). 

4.3 Effect of the stiffness of foundation 

Finally, in order to consider the influences of the stiffness of foundation on the static bending of the FFSS 

FGP L-shape nanoplate, we change K1 from 0 to 1000, and K2 from 0 to 100 with respect to k=5, ξ=0.2, 

and nonlocal factor μ=4. From the obtained numerical results show in Fig. 5, it is observed that when 

increasing K1 and K2 leads to the displacement of nanoplates decrease and thus, the elastic foundation makes 

the stiffness of FGP L-shape nanoplates increase. Furthermore, it is found that the Pasternak foundation 

supports stronger than the Winkler foundation. 

 
Fig. 5. The displacement of the FSS FGP L-shape nanoplate versus K1 and K2. 

5 CONCLUSIONS 

In this article, the static analysis of the FGP L-shape nanoplate is studied by using the FEM and nonlocal 

theory. From the finite element formulation, the author coded the calculation program by Matlab software. 

Checking the reliability of the calculation program and performing the examples to analyze the effect of 

parameters on static bending of FGP L-shape nanoplates. From the proposed formulation and the numerical 

results, some main remarks are drawn as follows: 

- Using the FEM will be convenient in modelling and meshing. Especially, with structures that are not 

symmetrical as L-shape. 

- The material parameters and the law of porosity distribution significantly affect the static bending of 

FGP L-shape nanoplates. Specifically, the increase of volume fraction index k and porosity volume fraction

 make the reduction of the stiffness of nanoplates and this leads to the increase of displacement and stress. 

Conversely, the increase of foundation’s stiffness results in decrease displacement and stress of nanoplates. 

In addition, it can be seen that the nanoplates with porosity distribution case 2 is stiffer than case 1. 

- Numerical results in the present work are useful for the calculation, design of FGP L-shape nanoplates 

in engineering and technologies. 

- The present approach can be developed to investigate static bending of the FGP nanoplate with 

different shapes. 
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PHÂN TÍCH UỐN TĨNH CỦA TẤM NANO CHỮ L ĐẶT TRÊN NỀN ĐÀN HỒI 

SỬ DỤNG PHƯƠNG PHÁP PHẦN TỬ HỮU HẠN DỰA TRÊN LÝ THUYẾT PHI 

ĐỊA PHƯƠNG 

 

TRẦN THẾ VĂN1, PHẠM QUỐC HÒA1, LÊ THANH DANH1, AO HÙNG LINH1,                                   

TRẦN TRUNG THÀNH2 

1Khoa Cơ khí, Trường Đại học Công Nghiệp Thành phố Hồ Chí Minh 
2Khoa Cơ khí-Học viện Kỹ thuật quân sự 

 

Tóm tắt. Bài báo này trình bày phương pháp phần tử hữu hạn phân tích uốn tĩnh của tấm nano hình dạng 

L vật liệu xốp có cơ tính biến thiên đặt trên nền đàn hồi sử dụng lý thuyết phi địa phương (nonlocal). Vật 

liệu xốp có cơ tính biến thiên theo chỉ số mũ thể tích (k) và chỉ số lỗ rỗng (ξ) trong hai trường hợp phân bố 

lỗ rỗng “even” và “uneven”. Nền đàn hồi bao gồm hai thông số là độ cứng Winkler (k1) và độ cứng Pasternak 

(k2). Một vài kết quả số được so sánh với kết quả của các công trình khác đã công bố để chứng minh tính 

chính xác và tin cậy của phương pháp đề xuất. Ngoài ra, ảnh hưởng của các tham số như độ cứng nền đàn 

hồi, đặc trưng vật liệu đến ứng xử uốn tĩnh của tấm nano đặt trên nền đàn hồi được nghiên cứu chi tiết trong 

phần kết quả số. 

Từ khóa. FGP; Uốn tĩnh; Tấm nano; Lý thuyết phi địa phương. 
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