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Abstract. We survey the nonparametric estimation of the probability € := lP’(X <Y ) when two random
variables X and Y are observed with additional errors. Specifically, from the noise versions X,..., X

of X and Y,....Y! of Y, we introduce an estimator 9; of 6 and then establish the mean consistency for
the suggested estimator when the error random variables have the Laplace distribution. Next, using some
further assumption about the condition of the densities f, of X and f, of Y, we then derive the

convergence rate of the root mean square error for the estimator.
Keywords. Nonparametric, error density, estimator, convergence rate.

1. INTRODUCTION
Let X|,...,X, be ii.d. random variables from an unknow density function f, of X and Y,...,Y be

i.i.d. random variables from an unknow density function f, of ¥. We concern the problem of estimating
the quantity
0=P(X<Y) (1)
from given the two independent samples
Xj’.sz+§’j,Yk'=Yk+77k,j=1,...,n;k=1,...,m. 2

Here, one observes X ; from f X j=1,..,n and Y from Sy» k=1,...,m. The random variables ¢,

and 7, are known as error ones. The random variables X, £, Y, 7], are assumed to be mutually
independent for 1</, j'<n, 1<k, k'<m. In addition, assume that each ¢ ; has its own known density

g, and each 7, has its own known density g, . The densities g, and g, , are also called error

densities.

The quantity @ has many applicabilities in various fields. For instance, & is equal to the area under ROC
curve which is used as a graphical tool for evaluation of the performance of diagnostic tests (see Metz [1],
Bamber [3], Hughes et al. [11], Kim-Gleser [17], Coffin-Sukhatme [20], Zhou [27]). Besides, the quantity
€ plays an important role in biostatistics (see Pepe [21]) and in engineering (see Kotz et al. [24]).
Additionally, the quantity & is also applied in agriculture (see Dewdney et al. [22]).

In the context of error free data, i.c., é’j =0 and 77, =0, there are many papers researching in both
parametric and nonparametric approaches (see Kundu-Gupta [7, 8], DeLong et al. [9], Wilcoxon [10],
Mann-Whitney [12], Tong [ 13], Montoya- Rubio [16], Constantine et al. [ 18], Huang et al. [19], Kotz et al.
[24], Woodward-Kelley [26], among others). However, for the problem of estimating the quantity € from
given contaminated observations as in (2), the problem has not been studied much. For a nonparametric
framework, there are a few papers related to the problem. in Coffin-Sukhatme [20], with contaminated
observations, the Wilcoxon-Mann-Whitney estimator was used to survey the bias of the estimator. In Kim-
Gleser [17], the authors used the SIMEX method, proposed by Cook-Stefanski [15], to construct an
estimator of @, in which the measurement errors have the standard normal distribution. Applying

nonparametric deconvolution tools and basing on the contaminated samples, Dattner [14] developed an
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optimal estimator of @ when error density functions g ., and g , are assumed to be supersmooth. Herein
a density is called supersmooth if its Fourier transform decays with an exponential rate at infinity. Next,
Trong et al. [4] considered the problem in the case where g, . and g, , are compactly supported ones.
Following the latter paper, Trong et al. [5] considered the problem with heteroscedastic errors. This means
that & ; and 77, have different distributions for 1< j<n, 1<k<<m. Recently, Phuong-Thuy [2]

concentrated on the case where the distribution of the random errors is unknown but symmetric around zero
and can be estimated from some additional samples.
To the best of our knowledge, so far the problem of estimating the quantity & when error densities g .

and g, are ordinary smooth has not been considered in any research yet. This is a popular standard

condition where the error densities have the Fourier transform decaying with polynomial rate at infinity.
Therefore, in our current work, we fill partially the gap by considering the problem in the setting where
error densities g, ; and g, are the Laplace density, which is a specific case of ordinary smooth density.
This is also the condition about the problem that has never been considered before. Moreover, it is also
known that the Laplace distribution plays an important role in many scientific fields. It has attracted
interesting applications in the modeling of detector relative efficiencies, measurement errors, extreme wind
speeds, position errors in navigation, the Earth’s magnetic field, wind shear data and stock return. An in-
depth survey of the Laplace distribution including various properties and applications is provided by Kotz
et al. [23].

For convenience, we introduce some notations. The convolution of two functions f and g is denoted by

f*g. The notation h” (1)= Jmo ¢"h(x)dx denotes the Fourier transform of a function /(x), i=~/-1.
The notations 3 {z} and Z denote the imaginary part and conjugate of z, respectively. The number A4 (A)
is the Lebesgue measure of a measurable set 4 < R. For two sequences of positive real numbers {amm}

and {b }, the notation an,mé(/)(bmm) means a, ,<const-b, , forlarge n,m. The notation (9(1) isa

n,m

positive constant which is independent of n, m.

2. MAINRESULTS

We know that, for a continuous distribution function F, one has
1 1>l ;
F(x)=———| =3{e™ " (t)ldr, xeR,
(=52 [  sfe s (1)
where f is the density function corresponding to F. Let Z=X—Y. Then 0 =IP’(Z < 0) =F, (0),

where F, is the distribution function of Z. In addition, since f; = f7 .f; , we get that

0=F,( :———j )}dt = ———I \s{fx )ff—(t)}dt. 3)

From (3), in the present paper, we suggest an estimator of (9 in the form
~ 1 1 n m
0 =———- A, 4)
72 nm ,Z‘; 7

in which

1 =l T (gl (¢ P
A== =3 s fgg,/ (z)gl’i() F T v L ®)
' Cr (g O+ g (D))

where s >1 and the number y € (0, 1) plays a role as a regularization parameter and must be selected
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according to the sample sizes n, m later. The estimator éy was also considered in Trong et al. [5].

Now, for error random variables, we assume that ¢, and 77, j = 1,...,n; k=1,...,m have the Laplace
distribution where the densities of ¢, and 7, have the form g, (x) =(1/ 2)~e7‘x‘ with

gf (t) =1/ (1+t2). It is well-known that in the additive measurement error model, the class of the

ordinary smooth error densities is a popular standard class where the error densities have the Fourier
transform decaying with polynomial rate at infinity and the Laplace density is a famous example belonging
to this class. In order to prove some below results, we need the the following specific quality of the Laplace
density,

2, L4
1—‘gf(z){2 =2t—+2t2<2t2+t4<4t2, 0<<1/2.

(1 +t )
Proposition 2.1 Let the observations be given by model (2). Let the quantity € be defined as in (1) and the
estimator 9} be as in (4) with y € (0,1), s>1. Suppose that f 7 € L'(R). Besides, suppose that g ”

and g, , are the Laplace density, j=1,...,n; k =1,...,m. Then, we have

£ @] (@)

R nom tb‘*l
[E@,)-9]<C, y+iZZL 4

d
S 7’ts+‘g£_,« (t)‘z 1+
e A O 0)
nm ;;L/zﬁ 7'fs+‘g,fk(t)‘2 dr ¢,

where the constant C;; only depends on s.
Proposition 2.2 Let the observations be given by model (2). Let the quantity € be defined as in (1) and the
estimator 0} be given by (4) with y € (0,1), s>1. Suppose that g, , and g, , are the Laplace density,
Jj=L..,n; k=1,...,m; alongwith f7 f;” € L'(R). Then, we get

E|0, -0 <C x

0 U0 PNl U U

1 - . ytsfl
—
4 ZZ J.l/zﬁ g }/t’§+|g,ik (t)|2

nm 515 7t +‘g§,~ (’)|2

where the constant C, only depends on s.

Next, the following theorem represents the mean consistency of the estimator éy .
Theorem 2.3 The assumptions are the same as in Proposition 2.2. Besides, suppose that y >0 is a
parameter depending on the sample sizes n, m such that y — 0, ny’ —oo, my’ —>o as n,m—>o.
Then, E|é7 —0—0 as n,m —>oo.

Now, in order to obtain the rate of the convergence of the estimator Hy , we need the following definition.

1
For S > > and C >0, we consider the class
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Ssc = {(go,w) : @, are densities on R, j: Hz// ’(1+z ) dtéC}.

The class § 5. is quite usual. It is used in Trong et al. [4, 5]. We can see some examples to see its usual
quality, if ¢ and y are in Sobolev class, then the couple ((/),l//) belongs to §, .. Moreover, if ¢ is a
normal density or the Cauchy density and  is any density, then the couple ((p,l//) isin §y .

An upper bound for convergence rate of [ | éy -0 |2 is provided by the following important theorem.

1
Theorem 2.4 Given S > 5 C > 0. Let the observations be given by model (2). Suppose that g,

and g, , are the Laplace density, j=1,...,n; k=1,...,m. By choosing

11 1/3+d{§{2(2 ﬂ+1)+6}+s/3}
abe

p— + JE— 5
n o m
1 . 2 .
where d = with D=—{2(2ﬁ+1)+6}+2s/3, we obtain
6{2(28+1)+D} 3
sup ’E | é;/ i ‘2 <O()- {n—(2ﬂ+1)/6{2(2/)‘+1)+D} +m—(2ﬁ+l)/6{2(2ﬂ+1)+D}}'

(fx-Jy)€8p.c

3. CONCLUSIONS
We have considered the problem of nonparametric estimation of the probability 8 := ]P’(X < Y) when two

random variables X and Y are observed with additional errors. We use noise versions X|,..., X} of X

and Y...,Y' of Y to introduce an estimator éy of @ and then establish the mean consistency for éy when

the error random variables have the Laplace distribution. Finally, for

(S Sy )E€Tse E{(go,w):go,ware densities on R,J:|go H(// ‘(l+t ) dth}, we derive the

polynomial convergence rate of  sup (E | é}, -0 |2)
(fx>Jy)e8p.c

4. PROOFS
Proof of Proposition 2.1. Using the Fubini theorem, we get

E(A,)=— .[“’15 g, (Der ()1 (0 £ (2)
j H (WJF‘gg,j f[ )(ﬂer‘ng (t)r)

Lyl ¢, O Jer O DA @ |

! (7’1‘ +‘g4,/’ ! ‘ )(ﬂ +‘g'7”‘ (t)}z)

From (3) and (4), combining the latter equality, we obtain

‘E(éy) - 9\ <

Ueel, e O len of

nmz == 0 (?/ts +‘g£_/ (’)\2)(W +|g,fk( ‘

i S (07 (1))
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e 70t e (0 e (o)
S 3l T P o
7T (sl (0 ) e+ e o)
2

Since 1—‘gf ‘2<4t2 and 1—‘g”k(t)} <4, 0<i<1/2; j=L..,n, k=1,...,m, we have

2

‘ >1/2, forall t e [O 1/2\/_] Therefore, we get that

]:
‘gﬁ,.i

A (Ol (0

1/2«517/ts+7ts(‘g§,j t‘2+‘g'7f (Z)‘z)
F

)

a1 P 1 2pr PA/242) 271/ 242)
<[ 7 ‘2 dt <4 +

e e 2 :

g4((1/2\/5)2‘ . 201/22) }/‘ (7)
2s S
Also, we get
Iw lyztzs +yt ( f(t)‘z "“grik (Z)‘z)‘ )Hff ’
I/Z\Et(yt“+‘g4’j t)‘z)()/t“r‘g,fk (t)‘z) ' '
s1| pF F ST s
ng;ﬁ vt | £ (’)H 15 (t)} e .[:m ey (t)HfY (t)‘ dar. (8)

s F 2 s F 2
7t +eZ, (o) 7t e (1)
From (6), (7), and (8), we get the conclusion of the proposition.
To prove Proposition 2.2, we need to prove Lemma 1 and Lemma 2.
Lemma 1 Let the observations be given by model (2). Suppose that g, ; and g, , are the Laplace density,

J=L..,n, k=1,..,m. Let A, be given as in (5) with s>1 and 76(0,1). Then, we have

—5 2
max{E[(Aj’k)]Z;E(Aj,kAj,’ ) EA,,EA, }\ﬂlz (141+%+:):1J %,

where @, :=min{m,l/4}, j’zl,...,n; k':l,...,m.

2

Proof. For all tE(O,a)*), since l—‘g; (l)‘2<4lz and 1—‘gik (I)‘2<4t , j=1L..,n, k=1,...,m and

¥ €(0,1), we have

1-JeZ, () _W‘gl_‘gﬁj () +r<dr v <5 P <1,

Therefore,

- i(l ls7, (1) yf)k=:1+zg,j(z).

o +‘4/ }

_ - k
Likewise, (yts +|gik (t)‘ ) =1+Z(1—‘gi,{ (t)|2 —}/ts) =1+Z,,(t) forall t €(0,@.). Hence, for
k=1

all » € R, we obtain
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Iox sin (&
Sr) = ‘ B 2( )S B 5 dt
t(yf+‘gm (o) )(7/1 +|gr (1) )
W i @ Z ; t [on t N . t Z t
<J‘ Sll’l(tl”)dt +J’ | 4,1( )|dt+ n,k( )|dt+ LJ( ) n,k( )|dt
0 t 0 t 0 t 0 t
= S5 +S8,+85+58S,.
. . . v sin (u) . o
From Lemma 2.6.2, Section 2.6 in Kawata [25], we obtain S, = _[O ———=du|< 2. Using the inequality
u

a, +a k<2k_1 ak +a*) forall a,a,>0, k>1, we get that
(4, +a,) (af +a5) 1y
0 k 0 k 0
22,0 <X (1-[sz, (O +70°) <227 (1=, (0 ) +22 ()
<> (se) + sz i ©)
24T

for any ¢ € (0, @.). With the same argument as above, we also have

|Zn,k (Z‘)|<%i(8t2 )k +%izkl“‘k’ Vit e (0,m,). (10)
k=1

From (9), we obtain

1o k 2k-1 k  sk-1
=— 8) ¢ 2%t dt
(B g
i1 o) g2tait | 115 150,
2 23k o Sk "2 23 ) S k=1
L
2s

I 1
Similarly, the inequality (10) results in S, é + — . Next, we have

w11 . 1°° 1& .,
S, <j0 ;(5;( 22" k](i; 5;2&*}#

0

<l(i(8(0*2) +Z2kwikjj‘w¢(z(8) tzk_l +i2kt3k—1]dt<l+i.
4 P o \% P 4 2

k=1 =1 S

11 3
From the bounds of S, §,, S, and §,, these imply S(r)éZ + % forall r e R.
s
Next, for convenience, we denote

Lo S (e 0)

a,b =

a PN — 4, 0<as<b<oo, jeN, kel
(e +JaZ, (0 )1+ 25 ()
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11
By the Fubini theorem and the inequality S(7)< Y + 21, we obtain
S

Siw| < a dilg, dud
‘ O’w“ L’L I" t(yt°'+|g§j (t)fz)(yt%[gf,k (t)|2) e () ()
11 3
<Z+2—S
Additionally, using the inequalities |S Z}|<|Z‘ for ze C and (a1 +a,a, )Zg(a, +a22)(a1 +a; ) for

a,,a,,a, =0, we have

|2, (1)]gr: (0) 1= 1 o’
<— dt <— —d = .
e I(w +leZ, ()7 \)Zt o i)y
Therefore,
B(8,8 ) < B (04 +[s22 ) (57 #fs24))]
2
1

B(a,0)'] == (i + AT )<= B(lsid |+[s24)
2
1(11 3 .~ 1
<?(z+z S_J 7
BA, BA,, == E(S}s +51% )B(S/L +SLY)
T
<Ll s (st szt
1 1
<?[4 2 j_z

Finally, from the bounds of E[( ik ) }E(A/’JAJ', ) EA, ,EA ., we get the conclusion of the lemma.
Lemma 2 Let the observations be given by model (2). Suppose that g, ; and g, , are the Laplace density,

j=L...,n; k=1,...,m. Let the estimator éy be given by (4) with ¥ € (0,1) and s >1. Then, we have

Var(d,) < O{(Lrl]iz}.
n m)y

Proof. Since ]E(A, A, ,)=EAV EA, . forany j# j', k# k', we have

Var(9) = zzn:iE( ,k) e ZZZ(EAM)Z

J=1 k=1 J=l k=1
2 n.m k-l nm k-l
n2m? ZZZE( ) 2> ZZEA/,kEA/}j'
j=l k=2 j'=1 Jj=1 k=2 j'=1
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n m j-l1

( ) 2 ZZZEAJ kEA

Jzkljl J=2 k=1 j'= (11)

A 1 1)1
Hence, we obtain Var(6,)<O {(— + —) —2} by using Lemma 1 and (11). This completes the proof of
n mj)y

the lemma.
Proof of Proposition 2.2. Using Proposition 2.1, Lemma 2, and the common variance-bias decomposition

E|6,-60P=E@,)-0] +Var®,),
we get the result of the proposition.

Proof of Theorem 2.3. From the assumptions of the theorem and from Proposition 2.2, we only need to
prove that

" ts‘—l F ¢ F t
_[ 4 va (]:)HfY 2( )‘ PN
vy gz (1)

dt >0 as n,m—> .

I | O @)

122 o ‘gik (Z)‘z

Indeed, using the Lebesgue dominated convergence theorem, we get the result of the theorem.
To prove Theorem 2.4, we use the following lemma, the statement and the proof for the general case of

which are presented in Trong-Phuong [6].
Lemma 3 Suppose that the error density g satisfies the condition

|Sint|2 <|gf (t)‘

1+l

JoF
B, = {O <t<R: ‘g (t)‘ <g}.
Then there exists a constant K(g) >0 depending on g such that

For R>1 and & >0, put

A(B,, ., )<K()eR" (12)
Proof of Theorem 2.4. Given (f, f,) €8, we set
10 40! 0740,
Q:J = _[l/zﬁ at, Q’lvk e dt.

7t +leZ, (o) v+, (o)

For & >0 small enough and let R, >1, we write O, ; =Q, ;, + 0O, ;, +O, 5, Where
B 7L @A @)

e LRI ” +‘g£,- (t)‘z
@A,

y +|eZ, (o)
A @A ()

7+, ()f

2

Opja = J.I/Z«ﬁgtgl?l,

o7, (<a

4

Q§,./,3 = .|.1/2\/§<th1 JeZ, (0>

We have

1 c
Qg,j,lggjme O O|(1+2) (1+2)” dt<2R2ﬂ+1

Using (12), we infer O, , <2\/§ﬂ(%g )<2\/— 2K(g, )&R’. In addition, applying the Cauchy
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inequality, we get that
7 (O (

Qg,j,3 \I1/2f<l<R1 ‘gg/ >g 2‘g§ ¢ ‘\/_
]

2yR, d

\TI,MVX o)A (¢) di< C \T

Lo

G

From these upper bounds of O, .0, ,, and O, ,, we obtain

C C\yR;
<———+242K(g, &R’ + 13
QC,./ 2Rlzﬂ+1 \/_ (gg,_/)l 1 \/_51 (13)

With the same argument, we also have

C \/ vR/
<——+2\2K(g, )& R + 14
Qq,k 2R12ﬁ+1 (g,;,k) 1Y \/_51 (14)
Using Proposition 2.2, (13), (14), and the inequality

(b, +b, +b,+b,) <AB? +b2 +b2 +b7),

we deduce

& Y

| n m

2 K

1L 1y S5 )+ .
Choosing 7/=(—+—j &R and & =R LA peqults in
n o m

23 2 s
E|6, -6F <O(1).{(l+lj e
n m

1/3
n Rl-z(z/m) +(% n %j R3{ (2ﬂ+1)+6}+25/3}.

-d
1 1

Choosing R, = (—+—) , we obtain
n m

A 1 1 (2B+1)d
E[0, -0 I <o) -(— + _) <O()- {n—z(zzm)d 4228 }
n o m

Finally, applying the inequality «/Q +CQ<\/CT +\/Z for all ¢,c, >0, we get the conclusion of the
theorem.
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UOC LUQNG PHITHAM SO CUA P(.X <Y) VOI CAC HAM MAT PQ SAI SO LAPLACE

Tém tit. Chung toi khao sat sy udc lugng phi tham sd ciia xac suat @:=P(X <) khi hai bién ngdu
nhién X va Y dugc quan tric co tinh dén sai s6. Cu thé, tir cac phién ban nhiéu X 1’,...,X ,; cua X va
Y',...,Y, cia Y, ching t6i gioi thi¢u mot udce luong 6, cia & va sau do, thiét lap tinh virng theo trung
binh cta uwéc lugng duge dé nghi khi cac bién ngu nhién sai s6 6 phan phdi Laplace. Tiép theo, st dung
gia thiét thém vao vé diéu kién ciia cac ham mat d¢ f, cua X va f, cta Y, ching toi rat ra dugc toc do
hoi ty ctia can bac hai trung binh sai s6 binh phuong cta wéc lugng 97.

Tir khéa. Phi tham s6, mat d6 sai s6, udc luong, toe d6 hoi tu.
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