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Abstract. We survey the nonparametric estimation of the probability  : X Y    when two random 

variables X  and Y  are observed with additional errors. Specifically, from the noise versions 1,..., nX X   

of X  and 1,..., mY Y   of ,Y  we introduce an estimator ̂  of   and then establish the mean consistency for 

the suggested estimator when the error random variables have the Laplace distribution. Next, using some 
further assumption about the condition of the densities Xf  of X  and Yf  of ,Y  we then derive the 

convergence rate of the root mean square error for the estimator. 
Keywords. Nonparametric, error density, estimator, convergence rate. 

1.  INTRODUCTION 
Let 1, , nX X  be i.i.d. random variables from an unknow density function Xf  of X  and 1, , mY Y  be 

i.i.d. random variables from an unknow density function Yf  of .Y  We concern the problem of estimating 

the quantity  

 : X Y                 (1) 

from given the two independent samples 
 , , 1, , ; 1, , .j j j k k kX X Y Y j n k m                      (2) 

Here, one observes jX   from , 1, ,
jXf j n    and kY   from , 1, , .

kYf k m    The random variables j   

and k  are known as error ones. The random variables ,jX  ,j   ,kY  k   are assumed to be mutually 

independent for 1 , ,j j n  1 , .k k m  In addition, assume that each j  has its own known density 

, jg  
and each k  has its own known density , .kg  The densities , jg and ,kg  

are also called error 

densities.  
The quantity   has many applicabilities in various fields. For instance,   is equal to the area under ROC 
curve which is used as a graphical tool for evaluation of the performance of diagnostic tests (see Metz [1], 
Bamber [3], Hughes et al. [11], Kim-Gleser [17], Coffin-Sukhatme [20], Zhou [27]). Besides, the quantity 
  plays an important role in biostatistics (see Pepe [21]) and in engineering (see Kotz et al. [24]). 
Additionally, the quantity   is also applied in agriculture (see Dewdney et al. [22]). 

In the context of error free data, i.e., 0j   and 0,k   there are many papers researching in both 

parametric and nonparametric approaches (see Kundu-Gupta [7, 8], DeLong et al. [9], Wilcoxon [10], 
Mann-Whitney [12], Tong [13], Montoya- Rubio [16], Constantine et al. [18], Huang et al. [19], Kotz et al. 
[24], Woodward-Kelley [26], among others). However, for the problem of estimating the quantity   from 
given contaminated observations as in (2), the problem has not been studied much. For a nonparametric 
framework, there are a few papers related to the problem. in Coffin-Sukhatme [20], with contaminated 
observations, the Wilcoxon-Mann-Whitney estimator was used to survey the bias of the estimator. In Kim-
Gleser [17], the authors used the SIMEX method, proposed by Cook-Stefanski [15], to construct an 
estimator of ,  in which the measurement errors have the standard normal distribution. Applying 
nonparametric deconvolution tools and basing on the contaminated samples, Dattner [14] developed an 
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optimal estimator of   when error density functions , jg  and ,kg  are assumed to be supersmooth. Herein 

a density is called supersmooth if its Fourier transform decays with an exponential rate at infinity. Next, 
Trong et al. [4] considered the problem in the case where , jg  and ,kg  are compactly supported ones. 

Following the latter paper, Trong et al. [5] considered the problem with heteroscedastic errors. This means 
that j  and k  have different distributions for 1 ,j n  1 .k m  Recently, Phuong-Thuy [2] 

concentrated on the case where the distribution of the random errors is unknown but symmetric around zero 
and can be estimated from some additional samples.    
To the best of our knowledge, so far the problem of estimating the quantity   when error densities , jg  

and ,kg  are ordinary smooth has not been considered in any research yet. This is a popular standard 

condition where the error densities have the Fourier transform decaying with polynomial rate at infinity. 
Therefore, in our current work, we fill partially the gap by considering the problem in the setting where 
error densities , jg  and ,kg  are the Laplace density, which is a specific case of ordinary smooth density. 

This is also the condition about the problem that has never been considered before. Moreover, it is also 
known that the Laplace distribution plays an important role in many scientific fields. It has attracted 
interesting applications in the modeling of detector relative efficiencies, measurement errors, extreme wind 
speeds, position errors in navigation, the Earth’s magnetic field, wind shear data and stock return. An in-
depth survey of the Laplace distribution including various properties and applications is provided by Kotz 
et al. [23]. 
For convenience, we introduce some notations. The convolution of two functions f  and g  is denoted by 

* .f g  The notation    itxh t e h x dx



   denotes the Fourier transform of a function ( ),h x  1.i    

The notations  z  and z  denote the imaginary part and conjugate of ,z  respectively. The number  A  

is the Lebesgue measure of a measurable set .A  For two sequences of positive real numbers  ,n ma  

and  , ,n mb
 
the notation  , ,n m n ma b  means , ,constn m n ma b  for large , .n m  The notation  1  is a 

positive constant which is independent of , .n m  

2.     MAIN RESULTS 
We know that, for a continuous distribution function ,F  one has 

    
0

1 1 1
, ,

2
itxF x e f t dt x

t
      

where f  is the density function corresponding to .F  Let .Z X Y   Then    0 0 ,ZZ F     

where ZF  is the distribution function of .Z  In addition, since . ,Z X Yf f f  we get that 

         0 0

1 1 1 1 1 1
0 .

2 2Z Z X YF f t dt f t f t dt
t t


 

 
                             (3) 

From (3), in the present paper, we suggest an estimator of   in the form  

,
1 1

1 1ˆ : ,
2

n m

j k
j knm
 

                  (4) 

in which 
 

( ), ,
, 2 20

, ,

( ) ( )1 1
,

( | ( ) | )( | ( ) | )
j kit X Yj k

j k s s
j k

g t g t
e dt

t t g t t g t
 

   
  

     
   

                                     (5) 

where 1s   and the number  0,1   plays a role as a regularization parameter and must be selected 
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according to the sample sizes ,n  m  later. The estimator ̂  was also considered in Trong et al. [5].    

Now, for error random variables, we assume that j  and ,k 1, , ;j n  1, ,k m   have the Laplace 

distribution where the densities of j  and k  have the form    1/ 2 x
Lg x e   with 

   21/ 1 .Lg t t 
 
It is well-known that in the additive measurement error model, the class of the 

ordinary smooth error densities is a popular standard class where the error densities have the Fourier 
transform decaying with polynomial rate at infinity and the Laplace density is a famous example belonging 
to this class. In order to prove some below results, we need the the following specific quality of the Laplace 
density,   

 
 

2 4
2 2 4 2

22

2
1 2 4 , 0 1/ 2.

1
L

t t
g t t t t t

t


  


 

Proposition 2.1 Let the observations be given by model (2). Let the quantity   be defined as in (1) and the 

estimator ̂  be as in (4) with (0,1),   1.s   Suppose that 1( ).X Yf f L  Besides, suppose that , jg  

and ,kg  are the Laplace density, 1, , ; 1, , .j n k m     Then, we have 

   
 

   
 

1

0 21/2 2
1 1

,

1

21/2 2
1 1

,

1ˆ( )

1
,

sn m
X Y

s
j k

j

sn m
X Y

s
j k

k

t f t f t
C dt

nm t g t

t f t f t
dt

nm t g t








  










 




 

  





 





  

where the constant 0C
 only depends on .s  

Proposition 2.2 Let the observations be given by model (2). Let the quantity   be defined as in (1) and the 

estimator ̂  be given by (4) with (0,1),   1.s   Suppose that , jg  and ,kg  are the Laplace density, 

1, , ;j n   1, , ;k m   along with 1( ).X Yf f L  Then, we get  

   
 

   
 

2
1

2
1 1

2 21/2 2 1/2 2
1 1

, ,

2

ˆ| |

1

1 1 1
,

s sn m
X Y X Y

s s
j k

j k

C

t f t f t t f t f t
dt dt

nm t g t t g t

n m



 

 

 


 



 
 

 

 

           
    

  

    

where the constant 1C  only depends on .s  

Next, the following theorem represents the mean consistency of the estimator ̂ . 

Theorem 2.3 The assumptions are the same as in Proposition 2.2. Besides, suppose that 0   is a 

parameter depending on the sample sizes ,n  m  such that 0,   2 ,n   2m   as , .n m  

Then, 2ˆ| | 0    as , .n m  

Now, in order to obtain the rate of the convergence of the estimator ˆ ,  we need the following definition. 

For 
1

2
   and 0,C   we consider the class  
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        2
, , : , are densities on , 1 .C t t t dt C



      



 F  

The class ,CF  is quite usual. It is used in Trong et al. [4, 5]. We can see some examples to see its usual 

quality, if   and   are in Sobolev class, then the couple  ,   belongs to , .CF  Moreover, if   is a 

normal density or the Cauchy density and   is any density, then the couple  ,   is in , .CF  

An upper bound for convergence rate of 2ˆ| |   is provided by the following important theorem. 

Theorem 2.4 Given 
1

2
  , 0C  . Let the observations be given by model (2). Suppose that , jg  

and ,kg  are the Laplace density, 1, , ;j n   1, , .k m   By choosing  

  1
1/3 2 2 1 6 /3

31 1
,

d s

n m




     
    

 
 

where 
  

1

6 2 2 1
d

D


 
 with   2

2 2 1 6 2 / 3,
3

D s     we obtain  

          
,

2 1 /6 2 2 1 2 1 /6 2 2 12

( , )

ˆsup | | (1) .
X Y C

D D

f f
n m



   
         


  

F

 

3.   CONCLUSIONS  
We have considered the problem of nonparametric estimation of  the probability  : X Y    when two 

random variables X  and Y  are observed with additional errors. We use noise versions 1,..., nX X   of X  

and 1,..., mY Y   of Y  to introduce an estimator ̂  of   and then establish the mean consistency for ̂  when 

the error random variables have the Laplace distribution. Finally, for

          2
,, , : , are densities on , 1 ,X Y Cf f t t t dt C



      



  F  we derive the 

polynomial convergence rate of  
,

1/ 2
2

( , )

ˆs .up | |
X Y Cf f 

 



F  

4.  PROOFS  
Proof of Proposition 2.1. Using the Fubini theorem, we get   

       
     

       
     

, ,

, 2 20

, ,

2 2

, ,

2 20

, ,

1 1
( )

1 1
.

j kj k X Y

j k
s s

j k

j k X Y

s s
j k

g t g t f t f t
dt

t t g t t g t

g t g t f t f t
dt

t t g t t g t

 

 

 

 

  

  

  



 
    

  
 
 
   

  
 





 

From (3) and (4), combining the latter equality, we obtain 
ˆ( )   

   
          

2 2

, ,

2 20
1 1

, ,

1 1
1

n m
j k

X Y
s sj k

j k

g t g t
f t f t dt

nm t t g t t g t
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2 22 2
, ,

2 20
1 1

, ,

1 1
.

s s
n m j k

X Y
s sj k

j k

t t g t g t
f t f t dt

nm t t g t t g t

 

 

 

  



 

 

 
                                     (6) 

Since   2 2
,1 4jg t t  and   2 2

, ,1 4kg t t  0 1/ 2;t  1, , ,j n  1, , ,k m   we have 

2 2

, ,, 1/ 2,j kg g   for all 0,1/ 2 2 .t     Therefore, we get that 

    
         

2 22 2
, ,1/2 2

2 20

, ,

 
1

s s
j k

X Y
s s

j k

t t g t g t
f t f t dt

t t g t t g t

 

 

 

 

 

 
  

   

2 2 2 2
1/2 2

2 20
, ,

1 2 (1/ 2 2) 2 (1/ 2 2)
4

2

s s s s

j k

t t
dt

t s sg t g t 

    
  

 
  

2(1/ 2 2) 2(1/ 2 2)
4 .

2

s s

s s


 
  

 
                   (7) 

Also, we get   

    
         

2 22 2
, ,

2 21/2 2

, ,

 
1

s s
j k

X Y
s s

j k

t t g t g t
f t f t dt

t t g t t g t

 

 

 

 

  

 
  

   
 

   
 

1 1

2 21/2 2 1/2 2
, ,

2 .
s s

X Y X Y

s s
j k

t f t f t t f t f t
dt dt

t g t t g t 

 

 

 
 


 

                (8) 

From (6), (7), and (8), we get the conclusion of the proposition. 
To prove Proposition 2.2, we need to prove Lemma 1 and Lemma 2. 
Lemma 1 Let the observations be given by model (2). Suppose that , jg  and ,kg  are the Laplace density,

1, , ,j n  1, , .k m   Let ,j k  be given as in (5) with 1s   and  0,1 .   Then, we have 

    
2

2 *
, , , , , 2 2

1 11 3 1
max [ ] ; ; ,

4 2 1

s

j k j k j k j k j k s s


 



   

 
        

 

where  * 1/min 2,

1
: min ,1/ 4 ,

6 s
    

 
 1, , ; 1, , .j n k m      

Proof. For all  *0, ,t   since   2 2
,1 4jg t t  and   2 2

, ,1 4kg t t 1, , ,j n   1, ,k m   and 

(0,1),   we have 

     2 2 min 2,2
, ,1 1 4 5 1.ss s s
j jg t t g t t t t t        

Therefore, 

 
    2

, ,2
1

,

1
1 1 :1 Z .

k
s

j j
s

k
j

g t t t
t g t

 










     


  

Likewise,        
12 2

, , ,
1

1 1 :1 Z
k

s s
k k k

k

t g t g t t t   




        for all *(0, ).t   Hence, for 

all ,r  we obtain 
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*

2 20

, ,

sin
( ) :

s s
j k

tr
S r dt

t t g t t g t



  


 
  

            
         * * * *, , ,,

0 0 0 0

Z Z ZZsin j j kkt t tttr
dt dt dt dt

t t t t

            

            1 2 3 4:  .S S S S     

From Lemma 2.6.2, Section 2.6 in Kawata [25], we obtain 
 *

1 0

sin
2.

r u
S du

u


   Using the inequality 

   1
1 2 1 22

k k k ka a a a   for all 1 2, 0a a , 1,k  we get that 

         2 21 1
, , ,

1 1 1

 Z   1 2 1 2
k k ks k k s

j j j
k k k

t g t t g t t   
  

 

  

       

     2

1 1

1 1
8 2

2 2

k k sk

k k

t t
 

 

                        (9) 

for any *(0, ).t   With the same argument as above, we also have 

   2
, *

1 1

1 1
Z 8 2 , (0, ).

2 2

k k sk
k

k k

t t t t 
 

 

                (10) 

From (9), we obtain 

 * 2
2 0

1 1

1 1 1
8

2
  2

2

k k sk

k k

S t t dt
t

  

 

 
 

 
   

       * 2 1 1

0
1 1

  
1

8 2
2

k k k sk

k k

t t dt
  

 

 

   
 
   

                     

     
2
* 2*

* *
1 1 1 1

8 21 1 1 1 1
8 2

2 2 2 2

k
k sk

k ks

k k k kk sk s

   
   

   

           
     

       

1 1
.

4 2s
  

Similarly, the inequality (10) results in 3

1 1

4 2
S

s
 . Next, we have 

   * 2 2
4 0

1 1 1 1

1 1 1 1 1
 8 2 8 2

2 2
 

2 2

k kk sk k sk

k k k k

S t t t t dt
t

    

   

     
  
     

          *2 2 1 1
* * 0

1 1 1 1

1 1 1
8 2 8 2 .

4 4 2

k kk sk k k sk

k k k k

t t dt
s


 

   
 

   

   
     

   
     

From the bounds of 1,S 2 ,S 3S  and 4 ,S  these imply 
11 3

( )
4 2

S r
s

  for all .r  

Next, for convenience, we denote 
      
     

, ,
,
, 2 2

, ,

1
, 0 , , .

j kit X Y

j kbj k
a b a s s

j k

e g t g t
S dt a b j k

t t g t t g t
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By the Fubini theorem and the inequality 
11 3

( ) ,
4 2

S r
s

  we obtain 

*

,
0,  j kS 

 
         *

, ,2 20

, ,

sin j k

j k
s s

j k

t X Y u v
dt g u g v dudv

t t g t t g t



 

  

 

 

   

 
    

11 3
.

4 2s
  

Additionally, using the inequalities  z z  for z  and     2 2 2
1 2 3 1 2 1 3a a a a a a a    for  

1 2 3, , 0,a a a  we have 

   
      *

* *

, ,, *
, 2

* *
, ,

1 1 1
.

1

s
j kj k

s
s

j k

g t g t
S dt dt

t st g t g t

 
  

 


   

 

 


    

Therefore, 

     
* * * *

, , , ,
, , 0, , 0, ,2

  
1 j k j k j k j k

j k j k S S S S   
   

   
       

           

2

*
2 2

 
1 11 3 1

,
4 2 1

s

s s


 

 
   

 

     
* * * *

222 , , , ,
, 0, , 0, ,2 2

1 1
 j k j k j k j k

j k S S S S     
      

 

           

2

*
2 2

 
1 11 3 1

,
4 2 1

s

s s


 

 
   

 

   
* * * *

, , , ,
, , 0, , 0, ,2

 
1 j k j k j k j k

j k j k S S S S   
   

         

              
* * * *

, , , ,
0, , 0, ,2

1 j k j k j k j kS S S S   
   

    

           

2

*
2 2

 
1 11 3 1

.
4 2 1

s

s s


 

 
   

 

Finally, from the bounds of    2

, , , , , ,; ;j k j k j k j k j k   
       

 we get the conclusion of the lemma. 

Lemma 2 Let the observations be given by model (2). Suppose that , jg  and ,kg  are the Laplace density, 

1, , ; 1, , .j n k m     Let the estimator ̂  be given by (4) with (0,1)   and 1.s   Then, we have  

2

1 1 1ˆVar( ) .
n m 

    
  

 

Proof. Since  , , , ,j k j k j k j k         for any ,j j ,k k  we have  

   2 2

, ,2 2 2 2
1 1 1 1

1 1ˆV  ar( ) 
n m n m

j k j k
j k j kn m n m
   

      

                                 
 

1 1

, , , ,2 2 2 2
1 2 1 1 2 1

2 2n m k n m k

j k j j j k j j
j k j j k jn m n m
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1 1

, , , ,2 2 2 2
2 1 1 2 1 1

2 2
.

j jn m n m

j k j k j k j k
j k j j k jn m n m

 

 
      

      
                               (11)

 

Hence, we obtain 
2

1 1 1ˆVar( )
n m 

    
  

 by using Lemma 1 and (11). This completes the proof of 

the lemma. 
Proof of Proposition 2.2. Using Proposition 2.1, Lemma 2, and the common variance-bias decomposition 

2 2ˆ ˆ ˆ| | | ( ) | Var( ),           

we get the result of the proposition.    
Proof of Theorem 2.3. From the assumptions of the theorem and from Proposition 2.2, we only need to 
prove that 

   
 

   
 

1 1

221/2 2 1/2 2
, ,

0, 0 as , .
| |

s s
X Y X Y

s s
j k

t f t f t t f t f t
dt dt n m

t g t t g t 

 

 

 
 

  
 

   

Indeed, using the Lebesgue dominated convergence theorem, we get the result of the theorem.  
To prove Theorem 2.4, we use the following lemma, the statement and the proof for the general case of 
which are presented in Trong-Phuong [6]. 
Lemma 3 Suppose that the error density g  satisfies the condition 

 
 2

sin
.

1

t
g t

t
 

For 1R   and 0,   put 

  , ,
0 : .

g R
t R g t


 B  

Then there exists a constant ( ) 0K g   depending on g  such that 

  3

, ,
( ) .

g R
K g R


 B              (12) 

Proof of Theorem 2.4. Given , ,( , )X Y Cf f F  we set  

   
 

   
 

1 1

, ,2 21/2 2 1/2 2
, ,

: , : .
s s

X Y X Y

j k
s s

j k

t f t f t t f t f t
Q dt Q dt

t g t t g t
 

 

 

 

 
 

 
 

   

For 1 0   small enough and let 1 1,R   we write , , ,1 , ,2 , ,3 ,j j j jQ Q Q Q       where  

   
 1

1

, ,1 2

,

: ,
s

X Y

j t R s
j

t f t f t
Q dt

t g t














  

   
  1 , 1

1

, ,2 21/2 2 ,
,

: ,
j

s
X Y

j t R g t s
j

t f t f t
Q dt

t g t
 












  

   
  1 , 1

1

, ,3 21/2 2 ,
,

: .
j

s
X Y

j t R g t s
j

t f t f t
Q dt

t g t
 













  

We have 

       
1

2
1 2 1

1

2
, ,

1

1
1 1 .

2j X Yt R

C
Q f t f t t t d

R
t

R

 





  
 

Using (12), we infer 
, 1 1

3
, ,2 , 1 1, ,

.2 2 ( ) 2 2 ( )
j

j jg R
Q K g R


 

 B  In addition, applying the Cauchy 
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inequality, we get that 

   
  1 , 1

1

, ,3 1/2 2 ,
,

 
2j

s
X Y

j st R g t
j

t f t f t
Q dt

g t t
 









  

               1 1

1/2 2
1 1

2
.

2

s s

X Y

R RC
f t f t dt

 
 


  

From these upper bounds of , ,1 , ,2 ,,j jQ Q   and , ,3 ,jQ  we obtain  

13
, , 1 12 1

1 1

2 2 ( ) .
2 2

s

j j

C RC
Q K g R

R 




               (13) 

With the same argument, we also have 

13
, , 1 12 1

1 1

2 2 ( ) .
2 2

s

k k

C RC
Q K g R

R 




               (14) 

Using Proposition 2.2, (13), (14), and the inequality 

 2 2 2 2 2
1 2 3 4 1 2 3 44( ),b b b b b b b b       

we deduce 

   2 2 12 2 2 61
1 1 12 2

1

1 1 1ˆ| | 1 .
sR

R R
n m




   
 

           
  

 

Choosing 

1
2

3
3 3

1 1

1 1 s

R
n m

 
   

 
  and   2 2 1 3

1 1R      results in  

    

    

2/3 2
2 2 1 6 2 /32 3

1

1/3 2
2 2 1 6 2 /32 2 1 3

1 1

1 1ˆ| | 1

1 1
.

s

s

R
n m

R R
n m







 
   

   

    
 

     
  

 

Choosing 1

1 1
,

d

R
n m


   
 

 we obtain 

 
    

2 2 1
2 2 1 2 2 12 1 1ˆ| | (1) (1) .

d
d dn m

n m


 

 


         
 

 

Finally, applying the inequality 1 2 1 2c c c c   for all 1 2, 0,c c   we get the conclusion of the 

theorem. 
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ƯỚC LƯỢNG PHI THAM SỐ CỦA  X Y  VỚI CÁC HÀM MẬT ĐỘ SAI SỐ LAPLACE  

Tóm tắt. Chúng tôi khảo sát sự ước lượng phi tham số của xác suất  : X Y    khi hai biến ngẫu 

nhiên X  và Y  được quan trắc có tính đến sai số. Cụ thể, từ các phiên bản nhiễu 1,..., nX X   của X  và 

1,..., mY Y   của ,Y  chúng tôi giới thiệu một ước lượng ̂  của   và sau đó, thiết lập tính vững theo trung 
bình của ước lượng được đề nghị khi các biến ngẫu nhiên sai số có phân phối Laplace. Tiếp theo, sử dụng 
giả thiết thêm vào về điều kiện của các hàm mật độ Xf  của X  và Yf  của ,Y  chúng tôi rút ra được tốc độ 

hội tụ của căn bậc hai trung bình sai số bình phương của ước lượng ˆ .  

Từ khóa. Phi tham số, mật độ sai số, ước lượng, tốc độ hội tụ. 
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