
Journal of Science and Technology, Vol. 52B, 2021 

 © 2021 Industrial University of Ho Chi Minh City 
 

A NEW HYBRID ALGORITHM MPCM FOR SINGLE OBJECTIVE 
OPTIMIZATION PROBLEMS 

 
NGUYEN TRONG TIEN 

Khoa Công nghệ Thông tin, Trường Đại học Công nghiệp thành Phố Hồ Chí Minh, 
nguyentrongtien@iuh.edu.vn 

 
Abstract. One of the biggest challenges for researchers is finding optimal solutions or nearly optimal 
solutions for single-objective problems. 
In this article, authors have proposed new algorithm called MPCM for resolving single-objective problems. 
This algorithm is combined of four algorithms: Mean-Search, PSOUpdate, CRO operator and new operator 
call Min-Max. The authors use some parameters to balance between the local search and global search. The 
results demonstrate that, with the participation of Min-Max Operator, MPCM gives the good results on 23 
benchmark functions. The results of MPCM will compare with three famous algorithms such as Particle 
Swarm Optimization (PSO), Real Code Chemical Reaction Optimization (RCCRO) and Mean PSO-CRO 
(MPC) for demonstration the efficiency. 
Keywords. Optimization, single-object problems, algorithm. 

1 INTRODUCTION 
Recently, the optimal problem has been widely applied in all aspects of human life. So that, many 
researchers from universities around the world have focused on this field. In the real situation, these 
problems have been transformed into two basic types of mathematical problems: single-objective and multi-
objective. Within the scope of this paper, the authors stressed only on solving a single-objective prob lem. 
There were a lot of new optimization algorithms such as CRO [1], PSO [2], MPC [3], ACROA [4], DA [6], 
Spider Monkey [9], Harmony Search [12], Simulated Annealing [19]. From 2011, the CRO was utilized as 
a medium to solve many problems from different fields even single-objective or multi-objective [3, 8, 18, 
20, 21, 22, 23, 25, 26, 29, 30, 31, 32, 33, 34]. In CRO, there is a good search operation that was confirmed 
as a vital factor [1, 7]. The fast convergence of the algorithm has also been demonstrated through these 
papers. PSO [2] algorithm has been proven as very good and fast converges on many papers [7, 27, 34] 
including single-objective or multi-objective. 
In recent years, there are a lot of research about PSO [10], Swarm Intelligence [14, 15, 16, 17] and 
metaheuristics algorithm [11, 12, 13]. Hybridization with PSO to create new algorithms has become popular 
in this field [24]. The combination of PSO and CRO has been emerged in single or multi-objective of 
MPC[3], HP_CRO[7], HP_CRO for multi-object[34]. In MPC there exist also an operation called Mean 
Search (MSO). This operation has also tested as quite effective when searching in spaces where the CRO 
and PSO are unreachable. The combination of three operators above seems to be perfect. However, as the 
NFL[5] theory stated, in optimal algorithms, none of algorithm is the best, which means that there isn’t an 
algorithm can solve all the optimal problems. 
In order to design a well structured optimization algorithm for solving problems, the algorithm should not 
only good at exploration and good at exploitation but also good to maintaining diversity. If an algorithm is 
good at exploration searching then it may be poor at exploitation searching and vice versa. In order to 
achieve good performances on problem optimizations, the two abilities should be well balanced. 
In this paper, the authors proposed a new operation called Min Max Operator (MMO), in combination with 
operations already existed in CRO [1], PSO [2] and MPC [3] algorithms to solve some single-objective 
problem. Wherein, MMO, CRO and MSO play the role of exploiting operators, PSO play the role as the 
exploratory operator. In particular, the combination and the balance between the operations created the 
effectiveness of this algorithm in solving problems defined in the next part of this paper. 
Currently, we can formulate many practical problems as single-objective global optimization problems, 
which is the key to setting up state variables or model parameters for finding the optimum solution of an 
objective or cost function. We must determine a parameter vector ݔ∗ሬሬሬሬԦ for solving the cost function 
:݂)(Ԧݔ)݂ ߗ ⊆ ℜ஽ → ℜ) where ߗ is a non-empty, large, bounded set that represents the domain of the 
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variable space. The cost function usually considers D decision variables ݔԦ = ,ଵݔ] ,ଶݔ … ,  ஽]. This meansݔ
that if ݂(ݔԦ) > {(Ԧݔ)݂}ݔwhen݉ܽ ߗሬሬሬԦ  ݔ,(∗ݔ)݂ =  the result of minimization does not ,{(Ԧݔ)݂−} ݊݅݉−
degrade the general characteristics. 
This paper proposed a new approach to harmoniously combine the exploiting operators and exploratory 
operators. The main contributions of this paper are summarized as follows: 

- A new mathematical operation (MMO) has been created that collects the advantages of the 
solutions to create a better solution. 

- Creating a new algorithm, a new approach that can be applied to other algorithms in improving 
search capability. 

- A new algorithm (MPCM) has been created with a new approach that other algorithms can use to 
improve search capabilities. 

- An algorithm for navigating the search to avoid the local optimization towards the global 
optimization that improves speed and result of convergence. 

- The algorithm (MPCM) is tested on twenty three well-known standard functions. The results 
showed that the proposed algorithm is highly effective. 

The rest of this paper is organized as follows. Section 2 reviews studies that are related to PSO, CRO and 
MSO. Section 3, analysis and design new Min-Max Operator.  Section 4, the design of the main MPCM 
algorithm. Experimental results on the test functions are provided in Section 5. Finally, Section 6 concludes 
the work and discusses opportunities for future work. 

2 RELATED WORKS 
2.1 PSO algorithm 
The PSO [2] conducts searches using a population of particles which correspond to molecules in CRO, a 
population of particles is initially randomly generated. The standard particle swarm optimizer maintains a 
swarm of particle that represent the potential solutions to problem at hand. Suppose that the search space is 
D-dimensional, and the position of jth particle of the swarm can be represented by a D-dimensional vector, 
xj = (xj1, xj2, ..., xjD). The velocity (position change per generation) of the particle xj can be represented by 
another D-dimensional vector vj = (vj1, vj2, ..., vtD). The best position previously visited by the jth particle is 
denoted as pj = (pj1, pj2, ..., pjD). In essence, the trajectory of each particle is updated according to its own 
flying experience as well as to that of the best particle in the swarm. The basic PSO [...] algorithm can be 
described as: 
,௝ݒ  ௗ

௞ାଵ = ,௝ݒݓ ௗ
௞ + ܿଵ × ଵݎ × ൫݌௝, ௗ

௞ାଵ − ,௝ݔ ௗ
௞ ൯ + ܿଶ × ଶݎ × ൫݌௚,ௗ

௞ାଵ − ,௝ݔ ௗ
௞ ൯  (0.1) 

௝,ௗݔ 
௞ାଵ = ,௝ݔ ௗ

௞ + ,௝ݒ ௗ
௞ାଵ  (0.2) 

Where d [1, D], ݔ௝,ௗ
௞  is the dth dimension position of particle jth in cycle k; ݒ௝,ௗ

௞  is dth dimension velocity 

of the particle j in kth cycle;  ݌௜,ௗ
௞  is the dth dimension of individual best (pbest) of the particle j in kth 

cycle; ௚,ௗ݌ 
௞  is the dth dimension of global best (gbest) in cycle ݇; ܿଵ is the cognitive weight and c2 is a social 

weight; ݓ is the inertia weight; r1 and r2 are two random values similar distributed in the range of [0, 1]. In 
this paper, update process of PSO is used to explore another part of solution space when the local search 
caries out many times but cannot get better solution. It can not only avoid premature convergence but also 
escape from the local minimum. 

Algorithm 1: PSOUpdate operator is presented as follows 
1:  Input: particle jth (or Pop[j]) 
2:  Velvalue[j] = w × Velvalue[j] + c1 × r1 × (Pbestsvalue[j] - 
Popvalue[j])  

+ c2× r2× (Archivevalue[gbest] - Popvalue[j]) 
3:  Popvalue[j] = Popvalue[j] + Velvalue[j] 
4:  Constraint handling  
5:  Set Numhit = 0 
6:  Output: Update the new value for particle jth. 

At line 2 of the algorithm, expression used to calculate the velocity of each element; Pbestsvalue[j] is the best 
position that the molecule has received. The index gbest is random in [1, n], where n is the Archive size. 
Archivevalue[gbest] is a value derived from an external population (Archive). Popvalue[j] is the current value 
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of molecule jth in population. The line 3 of the algorithm is used to calculate the new position of the jth 
molecule after obtaining its velocity. At line 5, it means that, after using the operator PSOUpdate, it 
must search by other local search operators. This work helps the algorithm avoid premature convergence. 
In the rest of this paper, the particle and molecule can be used interchangeability. 
2.2 On-wall operator in CRO algorithm 
An on-wall ineffective collision [1] occurs when a molecule hits the wall and then bounces back. Some 
molecular attributes change in this collision, and thus, the molecular structure varies accordingly. As the 
collision is not so vigorous, the resultant molecular structure should not be too different from the original 
one. Suppose the current molecular structure is ω. The molecule intends to obtain a new structure ’ = 
Neighbor() in its neighborhood on the PES in this collision. The change is allowed only if 
ఌܧܲ  + ఌܧܭ ≥  ఌ′  (0.3)ܧܲ
We get ܧܭఌ′ = ఌܧܲ) + ఌܧܭ − (′ఌܧܲ ×  where q  [KELossRate,1], and (1 − q) represents the fraction of ݍ
KE lost to the environment when it hits the wall. KELossRate is a system parameter which limits the 
maximum percentage of KE lost at a time. The lost energy is stored in the central energy buffer. The stored 
energy can be used to support decomposition. If (0.4) does not hold, the change is prohibited and the 
molecule retains its original , PE and KE. The pseudocode of the on-wall ineffective operator is as follows: 

Algorithm 2: On-Wall Operator 
 

1. Input: A molecule M with its profile and the central energy 
buffer buffer. 

2. Obtain ’ = Neighbor() 
3. Calculate PE’ 
4. If ܲܧఌ + ఌܧܭ ≥  ఌᇱ thenܧܲ
5. Generate q randomly  [KELossRate, 1] 
ఌᇱܧܭ  .5 = ఌܧܭ) = ఌܧܲ + ఌܧܭ − (ఌᇱܧܲ ×  ݍ
6. Update ܾݎ݂݂݁ݑ = ݎ݂݂݁ݑܾ + ఌܧܲ) + ఌܧܭ − (ఌᇱܧܲ × (1 −  (ݍ
7. Update M :  = ’, PE =  PE’ and KE =  KE’  
8. end if 
9. Output M and buffer 

In the new algorithm, the authors utilized On-Wall operator to exploit neighbor elements (find the best 
solution around the initial elements) 
2.3 Min-Search Operator in MPC algorithm 

The On-Wall operator searchs in the regions of solution space that is near the original solution, while 
the PSOUpdate operator is used to searches in remote regions. MSO searches [3] in a region that is 
unexplored by the On-Wall and PSOUpdate operators in the solution space. The MSO algorithm is 
described as follows: 

Algorithm 3: MSO Algorithm 
1. Input: x is a solution, the dimension of the problem is D 
2. α := random [0, 1] 
3. for t := 1  D 
4.  Generate random number ܾ ∈ [0, 1] 
5.  if (b >  ) 
6.          x’(t) = x(t) + N(0,2) * xbest(t) 
7.      Inspect and handle boundary constraint 
8.  End if 
9. End for 
10. Output: solution  x’ 

The parameter ߙ is used to determine whether an element in solution ݔ will be altered or not. N(0,2) is 
Gaussian distribution,  is called Stepsize. ݔ௕௘௦௧ is the best solution that this molecule has achieved for the 
time being. The tth element will be changed by line 6 when b > . That means, the value of  ܾ corresponds 
to ߙ will determine the choice of elements to be changed by MSO. Moreover, the dependence on ݔ௕௘௦௧ 
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helps guide the search direction towards an efficient trajectory. Hence, this process gives us a more efficient 
operator.  

3 ANALYSES AND DESIGN NEW MIN-MAX OPERATOR 
The steps executed for finding the particle result elements from the first two elements particle1 and 
particle2 having n dimensions as followed:  
Step 1: Compute and compare ffitness(particle1) and ffitness(particle2) 
Step 2: If ffitness(particle1) > ffitness(particle2) in the case of Min problem or ffitness(particle1) < ffitness(particle2) 
in the case of Max problem then: 
Step 3: The particle result is particle2 and is replaced k (k < n) elements  of the particle result by k elements 
in particle1 as followed: 
Step 4: Randomly select k elements in particle1 to replace in the corresponding position in particle result 
so that ffitness(particle1[t]) < ffitness(particle result[t]) {with t runs from 1 to k}. 
Example: In Figure 1 is a particular problem of the f1 problem in the table [...] with the dimension n = 8, 
݂1௠௜௡(ݔ) = ෌ ௜ݔ

ଶ௡
௜ୀ଴  , we have particle2(x2) with sum of squares f1fitness(x2) = 49.4781  smaller than 

particle1(x1) with the sum of squares f1fitness(x1) = 207.177. So the algorithm will retain the particle2 then 
randomly select some elements (3 elements) in particle1 (for example, in 3rd, 4th and 5th  position), because 
f1fitness(x1[3, 4, 5]) = 1.0621 < f1 fitness(x2[3, 4, 5]) = 24.5681 so the process of replacing these three elements 
into particle result at the corresponding positions. When f1min (particle result) = 25.9721 obtained less than 
f1min (particle1) = 207.177 and f1min (particle2 = 49.4781.  
In Figure 2, also with the problem f1 but by randomly selecting 3 elements at 3rd, 5th and 7th positions in 
particle1, we have f1 fitness(x1[3, 5, 7]) = 0.954 < f1 fitness(x2[3, 5, 7]) = 31.16, so the process of replacing the 
3 elements of particle1 into particle result at the corresponding positions (3, 5, 7). The result obtained is 
that the particle result having  f1min (particle result) = 19.2721 is less than f1min (particle1) = 207.177 and 
f1min (particle2 = 49.4781. 

 
Figure 1: Description of selecting 3 successive element 

 

Figure 2: Description of selecting 3 random elements. 

The Max-Min algorithm is detailed in Algorithm 4. 
  

0.9 0.120.35 0.36 1.6 12.54.55.2

4.6 2.60.41 1.8 1.3 1.53.51.4

0.9 2.60.35 0.36 1.3 1.53.51.4

particle 1

particle 2

particle result

207.177

49.4781

25.9721

1 2 3 4 5 6 7 8

0.9 0.120.35 0.36 1.6 12.54.55.2

4.6 2.60.41 1.8 1.3 1.53.51.4

0.9 0.120.41 0.36 1.3 1.53.51.4

particle 1

particle 2

particle result

207.177

49.4781

19.2721

1 2 3 4 5 6 7 8



 A NEW HYBRID ALGORITHM MPCM FOR SINGLE OBJECT OPTIMIZATION PROBLEM 17 
 

© 2021 Industrial University of Ho Chi Minh City 

Algorithm 4: Max-Min Operator Algorithm 
1. Input: The Solution particle1, particle2, the dimension of the problem is D. 
2. S1  ffitness(particle1) ; S2  ffitness(particle2); 
3. if S1 > S2 then 
4. Particle3  particle2 (For i =1 to D do Particle3[i]  particle2[i] ) 
5. Generate int k ( 0 < k < D); { k elements need replacing } 
6. i := 1; 
7. int A[k]; {Creating an array of k elements for storing the position will change in 

Particle3} 
8. while ( i < k  )do 
9. Generate int t ( 0 < t < D and A[t] ≠ A[ahead] ) 
10. Spar1 = Spar1 + ffitness(particle1[t]); 
11. Spar3 = Spar3 + ffitness(particle3[t]); 
12. A[i]:=t; 
13. i ++; 
14. end while 
15. if  ( Spar1 < Spar3 ) then 
16. for i = 1 to k do 
17.  Particle3[A[i]]  particle1[A[i]] 
18.  end for 
19. end if 
20. Output: solution  Particle3; 

 
4 THE MAIN MPCM ALGORITHM 
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Figure 3: Flowchart of the MPCM algorithm 
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The procedure of the proposed MPCM algorithm can be summarized as follows: Algorithm consists of 3 
stages: 
Stage 1 (initialization stage): Including initialization values for the input parameters of the algorithm. Where 
Popsize is the initial molecule set size, StepSize is the parameter that determines the modification of the 
random molecule value in the On-Wall operator; α, γ,  are parameters that control the selection of one of 
the PSOUpdate, On-Wall, Mean-Search or Min-Max operators to change the molecule to a new molecule. 
Initially, these parameters are set to 0, meaning that the molecule has not been changed by PSOUpdate, On-
Wall, or Mean-Search. 
If these parameters are equal 1 that means they have been modified by  three operators PSOUpdate, On-
Wall, Mean-Search (the left side of the ABC diagram) and then the Min-Max operator will be executed (the 
right side of the ABC diagram). That means the molecule must be transformed by three operations 
PSOUpdate, On-Wall, Mean-Search before performing the Min_Max operation; r is the parameter used to 
store the elements needed to exchange in the Max-Min operator, n is the whole number selected which 
depends on each problem. 
Stage 2 (Reiteration stage): The input of this stage is the selection of a random molecule (Mw) from 
population set Pop. A molecule has three attached control parameters to decide which one it will be 
manipulated by. 
In each iteration, any molecule is transformed into a new molecule through a single operator among four 
operators (PSOUpdate, On-Wall, Mean-Search, and Min-Max). The selection of which operator to perform 
depends on the parameters α, γ and  in the molecule. Any molecule has to be transformed through the four 
operations to find a better solution. An element after being transformed by the three operators PSOUpdate, 
On-Wall, and Mean-Search (left side of ABC diagram) will be transformed by the Min-Max operator (the 
right side of Figure ABC). Because of the input of the Min-Max operator is two molecules so before the 
execution of the Min-Max operation, a random element from Mw in population set Pop is chosen by the 
algorithm which will create a molecule that has better fitness than the first two solutions. 
Stage 3: (ending stage): The algorithm will end if any stop criteria are satisfied and will create the best 
solution found and its objective function value (fmin(solution)). 

MPCM algorithm has been simulated through algorithm flowchart in Figure 3 

Algorithm 5: MPCM Algorithm 
1. Input: Problem function f, constraints for f, and dimension D of the problem. 
2. \\Initialization 
3. Assign parameter values to PopSize, StepSize. 
4. , α, γ parameters  0; 
5. Assign value n to r. 
6. Let Pop be the set of particle 1, 2,…, PopSize 
7. for each of molecule do 
8.  Assign Random(solution) to the particle (particle position) w; 
9. Compute the fitness by f(w); 
10. end for 
11. \\Iterations 
12. while (the stopping criteria not met) do 
13. Select a particle Mw from the Pop randomly; 
14. if (γ == 0 or  == 0 or α == 0) 
15.  if (α == 0) 
16.   PSOUpdate(Mw); 
17.   α 1 
18.  else if  (γ == 0) 
19.   Mean-Search(Mw); 
20.   γ  1 
21.               else  
22.   On-Wall(Mw); 
23.     1  
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24.  end if 
25. else 
26.  Select a particle Mw’ from the population set (Pop) randomly; 
27.  Select r element from the Pop randomly Mw’; 
28.  Max-Min(Mw, Mw’); 
29.  , α, γ   0; 
30. end if 
31. Check for any new minimum solution; 
32. end while 
33. //The final stage 
34. Output: the best solution found and its objective function value 

 
5 SIMULATION RESULTS 
5.1 Experimental setting 
      The algorithm is coded in Visual C# 2010, and all simulations are performed on the same personal 
computer with Intel (R) Core (TM) i5-62000U CPU @2.30GHz 2.40GHz and 12 GB of RAM in Windows 
10 environment. There can be no search algorithm that outperforms all others on all problems [28]. 

Table 1: Setting parameters for the representative functions in each category. 

Order Parameter Category I Category  Category  
1 PopSize 10 20 100 
2 StepSize 0.2 1.0 0.5 
3 Buffer 0 100000 0 
4 InitialKE 1000 10000000 1000 
5 MoleColl 0.2 0.2 0.2 
6 KELossRate 0.1 0.1 0.1 

5.1.1 Parameters and Benchmarks 
The number of control parameters was reduced, thus, it makes the implementation simple. The 

parameters from the source code of RCCRO were used directly. All the parameters used in this chapter are 
presented in Table 1.  
In this chapter, our proposed MPCM was tested to solve the test functions used in the paper[1]. The test 
functions are classified into three categories. The dimensions of the functions in Category I and Category 
II are both 30. These functions are called high-dimensional functions. The test function name and their 
dimension size, feasible solution space S, and global minimum   are also included in it. 

(1) High-dimensional Unimodal Functions  
This group consists of functions f1 - f7 and they are high-dimensional. There is only one global minimum in 
each of the functions. They are relatively easy to solve when compared with those in the next group. 

(2) High-dimensional Multimodal Functions 
This group is composed of functions f8 - f13. They are high-dimensional and contain many local minima. 
They are considered as the most difficult problems in the benchmarks set. 

(3) Low-dimensional Multimodal Functions 
This group includes functions f14 - f23. They have lower dimensions and fewer local minima than the 
previous group.  
5.1.2 Experiment comparisons 
5.1.2.1 Comparisons with some modern algorithms 

As can be seen in the paper [1], RCCRO4 is the best version of RCCRO. However, it shows worse 
results than MPC [3], which shows the best results in the versions of the hybrid algorithm. The PSO was 
proposed to optimize numerical functions, which has effective search ability [2]. The results of MPCM 
were compared with those of RCCRO4, MPC and PSO in this section. For each function, 50 runs were 
done, and the averaged computed value (Mean) and standard deviation (StdDev) were recorded. The four 
algorithms were ranked over the functions, and the average ranks for every category were obtained. The 
outcome was tabulated in Table 2 to Table 3 . 
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Table 2: Optimization computing results for f1 to f7. 

 FEs  MPCM PSO MPC RCCRO4 

ଵ݂  150000 
Mean 1.12E-300 3.69E-37 6.96E-250 7.14E-07 
StdDev 3.02E-200 2.46E-36 1.99E-157 2.14E-07 
Rank 1 3 2 4 

ଶ݂  150000 
Mean 4.18E-75 7.14E-24 2.15E-60 2.06E-03 
StdDev 2.01E-75 2.81E-23 4.04E-60 3.52E-04 
Rank 1 3 2 4 

ଷ݂  250000 
Mean 4.43E-250 1.55E-03 5.71E-199 2.63E-07 
StdDev 6.69E-00 5.91E-3 7.04E+00 5.93E-08 
Rank 1 4 2 3 

ସ݂  150000 
Mean 5.73E-21 4.43E-01 9.88E-12 9.88E-03 
StdDev 1.83E-20 2.56E-01 2.62E-12 5.58E-04 
Rank 1 4 2 3 

ହ݂  150000 
Mean 2.75E+01 2.22E+01 8.01E+01 6.31E+01 
StdDev 1.60 E-01 3.50 E+01 3.49 E+01 5.59 E+01 
Rank  2 1 4 3 

଺݂  150000 
Mean 0 0 0 0 
StdDev 0 0 0 0 
Rank 1 1 1 1 

଻݂  150000 
Mean 2.08E-03 8.18E-03 3.68E-03 8.61E-03 
StdDev 9.96E-04 2.87E-03 1.10E-04 3.39E-03 
Rank 1 3 2 4 

Average rank 
Overall rank 

1.14 2.71 2.14 3.14 
1 3 2 4 

From the average ranking shown in Table 2 to Table 3, MPCM shows the best result. Therefore, MPCM 
can be used to solve the benchmark problems. Note that no general algorithm can work best on all the 
functions. As can be concluded, nearly each algorithm can outperform the others on specific functions: 
MPCM performs best on f1, f2, f3, f4, f7, f8, f9, f10, f16, f19, f21, f22 and f23. PSO works best on f5, f11, f15, f16, and 
f17. MPC performs best on f12, f13 and f14. 

Table 3: Optimization computing results for f8 to f13 

 Fes  MPCM PSO MPC RCCRO4 

଼݂   150000 
Mean -1.24E+04 -1.25E+03 -1.00E+04 -1.15E+04 
StdDev 2.47E+02 1.61E+02 6.74E+02 2.92E+01 
Rank 1 4 3 2 

ଽ݂  250000 
Mean 0 6.20E+01 1.78E-00 1.81E-03 
StdDev 0 1.31E+00 5.50E-00 5.64E-04 
Rank 1 4 3 2 

ଵ݂଴  150000 
Mean 4.44E-16 6.88E-03 2.25E-15 2.93E-03 
StdDev 0 2.33E-02 3.41E-00 3.83E-04 
Rank 1 4 2 3 

ଵ݂ଵ  150000 
Mean 1 1.04E-01 1.00E+00 1.00E+00 

StdDev 0 1.04E-01 1.62E-11 4.37E-07 
Rank 2 1 2 2 

ଵ݂ଶ  150000 
Mean 9.80E-04 1.08E-02 3.45E-18 3.45E-01 
StdDev 1.75E-04 2.09E-02 3.60E-17 2.11E-01 
Rank 2  3 1 4 

ଵ݂ଷ  150000 
Mean 1.12E-02 1.04E-02 2.70E-13 1.80E-05 
StdDev 2.76E-03 1.59E-01 1.19E-13 2.30E-05 
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Rank 4 3 1 2 
Average rank 
Overall rank 

1.83 3.16 2 2.5 
1 4 2 3 

Table 2 gives the results for high-dimensional unimodal functions. According to the overall rank in 
Table 2, MPCM outperforms the rest of the algorithms. The standard deviations of MPCM are always less 
than those of PSO, RCCRO4 and MPC. However, MPCM gives poorer results in solving f13. In f6 MPCM 
can obtain the global minima 0 and their standard deviations are 0. It shows that MPCM is robust in solving 
these test functions. For f4 and f7, our algorithm gives the best results although it cannot obtain the global 
minima, and the standard deviation is the least. However, MPCM gives poorer performance than PSO and 
HP-CRO4 in solving f5.  
Table 2 shows that MPCM gets the highest overall rank. MPC ranks second then followed by PSO, and 
RCCRO4 ranks the lowest. In general, MPCM is efficient in solving high-dimensional unimodal functions. 

 
Table 4: Optimization computing results for f14 to f23 

 FEs  MPCM PSO MPC RCCRO4 

ଵ݂ସ  7500 
Mean 9.98E-01 9.98E-00 2.81E-01 3.56E+00 
StdDev 8.71E-10 6.46E-01 3.04E-11 1.81E+00 
Rank 2 4 1 3 

ଵ݂ହ  250000 
Mean 3.80E-04 2.05E-04 5.35E-04 6.82E-04 
StdDev 6.12E-05 5.62E-04 1.07E-04 8.56E-05 
Rank 2 1 3 4 

ଵ݂଺  1250 
Mean -1.01E+00 -1.01E+00 -0.95E+00 -0.966E+00 
StdDev 1.89E-02 2.19E-02 6.84E-03 6.45E-01 
Rank 1 1 4 3 

ଵ݂଻  5000 
Mean 3.99E-01 3.98E-01 4.00E-01 3.99E-01 
StdDev 9.79E-04 3.96E-02 1.20E-02 1.39E-02 
Rank 2 1 4 2 

ଵ଼݂  10000 
Mean 3.00E+00 3.00E+00 3.05E-01 3.03E+00 
StdDev 1.85E-04 6.14E-03 3.89E-05 4.20E-02 
Rank 2 2 1 4 

ଵ݂ଽ  4000 
Mean -3.86E+00 -3.86E+00 -3.86E+00 -3.82E+00 
StdDev 2.80E-03 3.73E-03 9.35E-03 2.97E-04 
Rank 1  1 1 4 

ଶ݂଴  7500 
Mean -3.26E+00 -3.25E+00 -3.32E+00 -2.41E+00 
StdDev 3.70E-02 2.41E-02 2.74E-01 4.08E-03 
Rank 2 3 1 4 

ଶ݂ଵ  10000 
Mean -9.57E+00 -9.50E+00 -8.53E+00 -1.23E+00 
StdDev 7.37E-01 3.85E-00 2.64E-01 7.52E+00 
Rank 1 2 3 4 

ଶ݂ଶ  10000 
Mean -9.96E+00 -9.75E+00 -9.49E+00 -1.26E+00 
StdDev 4.83E-01 4.77E-01 2.07E-01 5.95E+00 
Rank 1 2 3 4 

ଶ݂ଷ  10000 
Mean -1.00E+01 -9.91E+00 -8.53E+00 -2.08E+00 
StdDev 6.05E-01 5.31E-01 3.22E-01 1.04E+00 
Rank 1 2 3 4 

Average rank 
Overall rank 

1.5 1.9 2.4 3.6 
1 2 3 4 
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Table 3 gives the results for high-dimensional multimodal functions. MPCM outperforms PSO, MPC and 
RCCRO4. The performance of MPCM is the best in solving all the functions, except for f11, f12 and f13. For 
f9, MPCM can obtain the global minimum and its standard deviation is 0. MPCM also gives the best 
performance when solving f8, f9, and f10.  

Table 3 supports the conclusion that MPCM obtains the highest overall rank, followed by MPC, RCCRO4 
and PSO. Thus, MPCM is efficient in solving high-dimensional multimodal functions. 
Table 4 gives the results for low-dimensional multimodal functions. MPCM also outperforms the other 
algorithms. It gives the best performance when solving f16, f19, f21, f22 and f23. MPC can get the best rank 
when solving f14, f19 and f20. For f17, PSO ranks first. 
From Table 4, it can be concluded that MPCM ranks first, PSO ranks second, MPC ranks third, and followed 
by RCCRO4. In other words, MPCM is also efficient in solving low-dimension multimodal functions. 
5.2 Experimental results 
Figure 4 shows the results of 50 independent runs of 4 problems f1, f2, f3 and f4 for the four algorithms PSO, 
MPC, RCCRO and New (MPCM). In Figure 4 (a) shows: 
 

(a) (b)  

(c) (d)  
Figure 4: Global-best results of PSO, MPC, RCCRO4 and MPCM for f1(a), f2(b), f3(c) and f4(d) of 50 runtimes 

About standard deviation: the results of RCCRO are more stable than the other 3 algorithms, the result 
difference between runs is not large, we can conclude that this is RCCRO algorithm for the highest stability 
in 4 algorithms shown in the figure. The second stable result belongs to PSO, followed by MPCM. The 
standard deviation of the MPC algorithm is the largest. 
About Global-best results: In Error! Reference source not found., for all the selected functions, the 
RCCRO algorithm gave the worst results, followed by PSO, MPC, and MPCM for the best results. 
Although the MPCM 50 runs were superior to the other three algorithms, the MPC algorithm that had a 
few runs gave better results than the MPCM. Even so, the better number of times still belongs to MPCM. 
In addition, according to the data in the table Table 2 to Table 4, MPCC is superior to the PSO, RCCRO 
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and MPC algorithms. Based on these important results, we conclude that the MPCM algorithm is superior 
to the other algorithm. 
In addition, according to the data in the Table 2 to Table 4, MPCC is superior to the PSO, RCCRO and 
MPC algorithms. Based on these important results, we conclude that the MPCM algorithm is superior to 
the other algorithm. 

(a) (b)  

(c) (d)  

Figure 5: Convergence curves of MPC, RCCRO, PSO and MPCM for f4(a), f7(b), f9(c) and f10(d) 

Figure 5 illustrates the convergence of algorithms MPC, RCCRO, PSO and MPCM for 4 randomly selected 
problems in functional groups: f4, f7 belong to group I, f9 and f11 belong to group II.  
In general, Figure 5 (a), 5 (b), 5 (c) and 5 (d), the convergence of RCCRO is slowest. It is also easy to see 
that, in most problems, PSO is the fastest convergence of near-optimal value among 4 comparison 
algorithms.  
In Figure 5 (a), the values of solutions of RCCRO change step by step, however, the change is very small, 
it means that RCCRO converges slowly, the remaining 3 algorithms converge. condenser very fast. PSO 
has quite large changes in the root value through the iterations, so PSO converges to the nearest point near 
0, then MPCM algorithm and finally MPC algorithm. Similar to Figure 5 (a), in Figure 5 (b), PSO has the 
fastest convergence rate to the nearest point, then to MPCM, MPC and finally RCCRO.  
Looking at Figure 5, it is easy to see that the convergence speed of the illustration in Figure 5 (a) shows 
that the gradual convergence of the algorithms is very different, for RCCRO, most of all the algorithms in 
the figure. For the remaining 3 algorithms, the change over step by step is very large, converging very 
quickly. The fastest is the PSO, then the MPCM and MPC. Figure 5(b) shows that, for this f7 problem, the 
algorithms converge very quickly, the fastest is still PSO, then MPCM, MPC and RCCRO. 
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6 CONCLUDING REMARKS AND FUTURE WORK 
In this paper we proposed a novel algorithm to solve global optimization problems. This algorithm is based 
on the balancing of global and local search strategy. MPCM is conceptually simple and relatively easy to 
implement. MPCM can tackle a wide range of different continuous optimization problems and has the 
potential to be employed to solve real-world problems. 
In order to evaluate the performance of MCPM, we adopted a set of 23 benchmark functions which cover 
a large variety of different optimization problem types. We compared MPCM with the stateof-the-art 
optimization algorithms, namely, PSO, RCCRO and MPC. These algorithms have been employed to solve 
a large set of different benchmark optimization functions and real-world problems, and demonstrated 
outstanding performance. 
The results show that the performance of MPCM is outstanding compared with the above listed algorithms 
in all three different groups of functions. This conclusion was supported by both the simulation results and 
the statistics of the simulation data. 
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GIẢI THUẬT LAI GHÉP MỚI MPCM CHO LỚP BÀI 
TOÁN TỐI ƯU ĐƠN MỤC TIÊU 

Abstract. Một trong những thách thức lớn nhất đối với các nhà nghiên cứu là tìm ra các giải pháp 
tối ưu hoặc các giải pháp gần như tối ưu cho các bài toán đơn mục tiêu.Trong bài báo này, các tác 
giả đã đề xuất một thuật toán mới gọi là MPCM cho các bài toán đơn mục tiêu. Giải thuật này là sự kết 
hợp của 4 phép toán: Mean-Search, PSOUpdate, CRO và một phép toán mới gọi là Min-Max. Các tác 
giả đã dùng các tham số để cân bằng giữa tìm kiếm cục bộ và tìm kiếm toàn cục để cho ra kết quả tối 
ưu hơn. Kết quả chứng minh rằng, với sự tham gia của thuật toán Min-Max. MPCM cho kết quả tốt 
trên 23 bài toán benchmark. Kết quả được so sánh với 3 giải thuật nổi tiếng, đó là Particle Swarm 
Optimization (PSO), Real Code Chemical Reaction Optimization (RCCRO) và Mean PSO-CRO (MPC) 
Từ khóa: Tối ưu hóa toàn cục, các bài toán tối ưu đơn mục tiêu, giải thuật lai ghép 
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