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Abstract. SVM parameters have serious effects on the accuracy rate of classification result. Tuning SVM 

parameters is always a challenge for scientists. In this paper, a SVM parameter optimization method based 

on Adaptive Elitist Differential Evolution (AeDE-SVM) is proposed. Furthermore, AeDE-SVM is applied 

to diagnose roller bearing fault by using complementary ensemble empirical mode decomposition 

(CEEMD) and singular value decomposition (SVD) techniques. First, original acceleration vibration 

signals are decomposed into Intrinsic Mode Function (IMFs) by using CEEMD method. Second, initial 

feature matrices are extracted from (IMFs) by singular value decomposition (SVD) techniques to obtain 

single values. Third, these values serve as input vector for AeDE-SVM classifier. The results show that the 

combination of AeDE-SVM classifiers and the CEEMD-SVD method obtains higher classification 

accuracy and lower cost time compared to other methods. In this paper, the roller bearing vibration signals 

were used to evaluate the proposed method. The experimental results showed that the superior performance 

compared to other SVM parameter optimization techniques and successfully recognized different fault 

types of roller bearing during its operation. 
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1 INTRODUCTION 
Support vector machine (SVM), one of the powerful techniques for regression and classification in machine 

learning, has been widely used in recent decades. SVM is the binary classification algorithm implemented 

based on the theory of risk minimization to find an optimal separation hyperplane in a multi-dimensional 

space. It has showed the advantages in high dimensional classification problems compared to other 

methods, such as logistic regression[1], k-nearest neighbors[2] by the high generalization capability and 

sparse representation ability. However, in various applications, SVM always requires different suitable 

parameters in order to achieve the best classification rate. In another word, the quality of SVM classification 

is significantly affected by the selection method of its operating parameters, including ordinary SVM 

parameters and kernel function parameters. Unfortunately, there is currently no common method for 

selecting the SVM parameters which can ensure SVM performance in various problems. Therefore, it is 

essential to develop a dynamic method for optimizing the SVM parameters in various applications.  

Tuning SVM parameters is one of the major challenges for scientists in several decades. Several approaches 

have been proposed to provide a general SVM parameter optimization method, but still got some 

drawbacks. The standard method grid-search, although providing a good performance, requires complex 

computation and time consuming. Gradient-based approaches can also be used, such as simulated 

annealing, but tends to be trapped in complicated scoring for assessing the performance of the parameters 

[3-5]. Evolutionary algorithms, a class of iterative, randomized, global optimization techniques[6],or the 

heuristic algorithms, such as the genetic algorithm (GA), the particle swarm optimization (PSO), and the 

ant colony optimization (ACO) were also used to optimize SVM parameters[7, 8]. However, they could be 

easily stranded in local optimization areas and required high computation cost. 

This research aims to provide a proper method that can generally tune and optimize SVM parameters. 

Among several techniques have been developed and successfully applied for a variety of structural 

optimization issues, such as Sequential Linear Programming (SLP)[9], sequential quadratic programming 

(SQP)[10], optimality criterion (OC)[11], and coercive methods; the Adaptive Elitist Differential Evolution 

(AeDE) algorithm – the improved version of differential evolution (DE) introduced by Storn and Price in 
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1977 – is one of the most appropriate methods to solve existing issues[12, 13]. Developed to solve the 

problems of nonlinear constraints and discrete variables, the DE related methods have been proven as an 

effective method in addressing many technical problems, especially AeDE with the efficient and effective 

performance in handling discrete variables[14]. AeDE was improved from the DE in mutation and selection 

phase to enhance selection capability and convergence rate so that the computational cost and time 

consumption would be significantly reduced. Therefore, in this method, the AeDE was integrated in SVM 

training process to simultaneously obtain the optimized SVM parameters.  

In order to demonstrate the superior performance of AeDE-SVM, roller bearing vibration signals were used 

for detecting four different fault types. First, the collected acceleration vibration signals from the roller 

bearing were fed to feature extraction subsystem which was built based on the Complementary Ensemble 

Empirical Mode Decomposition (CEEMD) method to decompose into Intrinsic Mode Functions (IMFs). 

Then, by the singular value decomposition (SVD) techniques, single value vectors were obtained from 

initial feature matrices extracted from the IMFs. Finally, AeDE-SVM classifier, with input from those 

single values, was used to detect fault types. The results show that the combination of AeDE-SVM 

classifiers and the CEEMD-SVD method obtains higher classification accuracy and lower cost time 

compared to other methods. 

2 ADAPTIVE ELITIST DIFFERENTIAL EVOLUTION 
The Adaptive Elitist Differential Evolution is an improved version of the differential evolution algorithm 

with two innovations in mutation phase and selection phase to enhance selection and optimization capability 

for discrete variables. In evolutionary computation, the DE is a method of optimization by repeatedly 

improving a quality-related candidate solution. It is, in fact, an iterative process, including initialization, 

mutation, crossover, and selection processes, to find the global search solution for general optimization 

problems. However, DE parameters, for example mutation factor F, crossover control parameter CR and 

trial vector generation strategies, have a significant impact on its performance. To overcome the common 

limitations of optimization algorithms, such as the use of a huge amount of resources as well as high 

computational cost, the AeDE was proposed with two improvements. The first one - adaptive technique 

based on the difference of the objective function between the best individual and the whole population in 

the previous generation - was applied in the mutation phase to improve the search capability. The second 

one - the optimum technique for selecting the best individuals for the next generation - was applied in the 

selection phase to enhance the search capability and to increase the convergence rate.  

The new adaptive mutation scheme of the DE used two mutation operators. The first one was the ‘‘rand/1” 

which aims to ensure diversity of the population and prevents the individual from being trapped in an 

optimal local location. The second one was the ‘‘current-to-best/1” which accelerates convergence speed 

of the population by leading the population to the best individuals. On the other hand, the new selection 

mechanism always searched and stored the best individuals of the whole population as the reference for 

next generation orientation which fastens the convergence. The children population C containing of trial 

vectors was combined with the parent population P of target vectors to create a combined population Q. 

Then, from the Q, best individuals NP were selected to construct the population for the next generation. 

The elitist selection operator was shown in Algorithm 1. 
Table 1: Algorithm 1: Elitist Selection Operator 

1: Input: Children population C and parent population P 

2: Assign Q = C ∪ P 

3: Select NP best individuals from Q and assign to P 

4: Output: P 

Table 2: Algorithm 2: The Adaptive Elitist Differential Evolution (AeDE) Algorithm 

1: Initialize the population 

2: Evaluate the fitness for each individual in the population 

3: while delta > tolerance or MaxIter is not reached do        // Definition of searching criteria  

4: for i =1 to NP do                                                                // Find the best individuals 

5: F = rand[0.4, 1]                                                                  // Generate the initial mutation factor  
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6: CR = rand[0.7, 1]                                                               // Generate the initial crossover control 

parameter  

7: jrand = randint(1, D)                                                            // Select a random integer number between 

1 and D 

8: for j=1 to D do                                                                   // Find the optimal parameters  

9: if rand[0, 1] < CR or j = jrand then                                      // Check the crossover operation  

10: if delta > threshold then                                                   // Check the mutation  

11: Select randomly r1 ≠ r2 ≠ r3 ≠ i;     ∀𝑖 ∈ {1,...,𝑃}[15, 16]           // Select the optimal parameters  

12: 𝑢𝑖𝑗 =𝑥𝑟1𝑗 +𝐹×(𝑥𝑟2𝑗 −𝑥𝑟3𝑗)  

13: else  

14: Select randomly r1 ≠ r2 ≠ best ≠ i;    ∀𝑖 ∈ {1,...,𝑃} 

15: 𝑢𝑖𝑗 =𝑥𝑖𝑗 +𝐹×(𝑥𝑏𝑒𝑠𝑡𝑗 −𝑥𝑖𝑗)+𝐹×(𝑥𝑟2𝑗 −𝑥𝑟3𝑗)  

16: end if 

17:else  

18:𝑢𝑖𝑗 = 𝑥𝑖𝑗  

19:end if  

20:end for  

21:Evaluate the trial vector ui  

22:end for 

23:Do selection phase based on Algorithm 1  

24:Define 𝑓best ,𝑓𝑚𝑒𝑎𝑛  

25: delta = | 
𝑓𝑏𝑒𝑠𝑡

𝑓𝑚𝑒𝑎𝑛−1 
 |  

26: end while  

 

where tolerance is the allowed error; MaxIter is the maximum number of iterations; and randint(1, D) is a 

function that returns a uniformly distributed random integer between 1 and D[12]. 

3 AEDE BASED SVM PARAMETER OPTIMIZATION 
3.1 Support Vector Machine 

Since firstly introduced by V.N.Vapnik, the SVM has become one of the most popular types of machine 

learning based on the concepts in statistics and computer science. It is a supervised learning method with 

associated learning algorithms used for classification and regression analysis. By the basic idea of 

separating the given problem domain into two opposite signed half-spaces (positive and negative spaces) 

by only a few indicators, called support vectors,  SVM shows their superior advantages in noisy data and 

outstanding performance in sparse representative[1, 2, 17]. However, choosing the SVM parameters which 

have a significant impact on the accuracy of classification result, is never an easy task. 

Standard binary SVMs accept input vectors and classify them into two different classes by a sign function. 

By using the mapping function φ, SVM actually maps training patterns from input space into a higher-

dimensional feature space to increase the class separation. Assume that there was a training sample set G 

= {(xi, yi); i = 1, 2,..., l}, where each sample xi ∈ Rd belonged to a class by y ∈ {+1; -1}; and the training 

data were not well-separated in input feature space, then the objective function could be as the following:  

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝜙(𝜔) =
1

2
⟨𝜔|𝜔⟩ + 𝐶 ∑𝜉𝑖

𝑙

𝑖=1

 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑦𝑖(⟨𝜔. 𝜙(𝑥𝑖)⟩ + 𝑏) ≥ 1 − 𝜉𝑖 ,   𝜉𝑖 ≥ 0, 𝑖 = {1,2,… , 𝑙} 
 

where ω was the normal vector of the separating hyperplane, C was the penalty coefficient parameter, b 

was the bias, ξi were nonnegative slack variables, and φ(x) was the mapping function[7].  

By applying a non-negative Lagrange multipliers αi ≥ 0, the optimization problem could be rewritten as 

follows: 

(1) 

(2) 

(3) 
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𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝐿(𝜔, 𝑏, 𝛼) =  ∑𝛼𝑖 −
1

2
∑ 𝛼𝑖

𝑙

𝑖,𝑗=1

𝑙

𝑖=1

𝛼𝑗𝑦𝑖𝑦𝑗𝐾(𝑥𝑖, 𝑥𝑗) 

 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 0 ≤  𝛼𝑖  ≤ 𝐶,∑𝛼𝑖𝑦𝑖 = 0

𝑙

𝑖=1

 

 

The decision function can be obtained as: 

𝑓(𝑥) = 𝑠𝑔𝑛 [∑𝛼𝑖𝑦𝑖𝐾(𝑥𝑖 . 𝑥) + 𝑏

𝑙

𝑖=1

] 

       

In the above equation, the most common kernel function, the radial basis (RBF) kernel function, was used 

to transform the initial problem domain to Gaussian domain, as shown in the following equation 

 

𝐾(𝑥, 𝑥𝑖) = 𝑒𝑥𝑝 (
−‖𝑥 − 𝑥𝑖‖

2

2𝜎2 ) 

where σ is the kernel parameter. 

3.2 AeDE based SVM Parameter Optimization 

As mentioning in previous section, it is widely known that the SVM parameters strongly affect to the 

performance. However, there is currently no general - dynamic technique to choose these parameters. Many 

researchers used brute-force or random trial–error optimization technique, which required long time 

processing and huge computational cost. In this paper, we introduced AeDE as a method to optimize SVM 

parameters. 

Particularly in the RBF kernel SVM approach, the penalty factor C and the kernel parameter σ in the 

Gaussian kernel function could be considered as the optimization variables while testing error was the 

optimization problem fitness measurement, given as follows:  

𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝐶, 𝜎) =  𝑇𝑒𝑠𝑡_𝐸𝑟𝑟𝑜𝑟𝑆𝑉𝑀(𝐶, 𝜎)  
where 

𝑇𝑒𝑠𝑡_𝐸𝑟𝑟𝑜𝑟𝑆𝑉𝑀 = 
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝑖𝑛 𝑡𝑒𝑠𝑡 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 𝑖𝑛 𝑡𝑒𝑠𝑡 𝑠𝑒𝑡 
 

In general, the AeDE algorithm was integrated to SVM training procedure to obtain the optimal parameters 

for maximizing the classification accuracy and generalization capability of the SVMs. Initially, each 

individual in the first generation is randomly obtained. The SVM algorithm normally calculated the 

corresponding output weights matrix for each individual. Then, AeDE can be applied to find the fitness 

measurement for each individual in the population. This process was repeated until the stopping condition 

was reached. When the evolution is finished, the optimal parameters of the SVM were ready to perform the 

classification[7]. The procedure of AeDE-SVM algorithm is shown as follow: 

 
Table 3: Algorithm 3: AeDE-SVM optimization algorithm 

Input: Training set, testing set; 

AeDE algorithm parameters, NP; 

1: Create a random initial population; 

2: Evaluate the fitness for each individual with training set;  

3: while (stopping criteria not met) do  

4: Randomly generate Fi and CRi  

5: for i=1 to NP do  

6: Call the Algorithm 2;  

7: Use the optimal parameters of SVM;  

8: end for  

(4) 

(5) 

(6) 

(7) 

(8) 
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9: end while 

10: Evaluate the optimized model by testing set;  

Output:  

Classification result 

 

AeDE

SVM parameters  C,  s

Training SVM Model

Calculating the fitness function

Optimal SVM parameters obtained

Is stop condition satisfied ?

Yes

No

 
Figure 1: The parameter optimization flowchart of SVM based on AeDE. 

4 APPLICATION OF AEDE-SVM IN ROLLER FAULT DIAGNOSIS ANALYSIS 
4.1 System Overview 

Machine learning as well as prediction techniques have shown their advantages in machinery fault detection 

recently to avoid and reduce the risks and costs of unexpected machine damages. In this paper, the AeDE-

SVM was used to detect the roller fault, one of the most popular components in industrial applications. 

The collected roller bearing acceleration vibration signals were decomposed into a specific number of IMFs 

by using CEEMD method. Then, the SVD technique was used to perform a dimensionality reduction and 

to provide the set of single value vectors, later on used as the input vectors of AeDE-SVM classifier. 

4.2 Complementary Ensemble Empirical Mode Decomposition (CEEMD) 

Complementary ensemble empirical mode decomposition is an improved algorithm of empirical mode 

decomposition. The EMD related approaches, mainly developed for nonlinear and nonstationary data, are 

empirical, intuitive, direct and self-adaptive comparing to other traditional decomposition techniques, such 

as Fourier transform or Wavelet transform. Basically, the EMD can decompose any time series signal into 

a finite number of IMFs by an iterative sifting process. Beginning with an assumption that any time series 

signal consists of different modes of oscillations concomitant simultaneously due to intrinsic complexity 

hidden in the data[18]. Those concomitant oscillatory functions, also called IMFs, can be extracted by 

EMD, shown in the equation.  

 

𝑥(𝑡) = ∑𝑖𝑚𝑓𝑖(𝑡)  + 𝑟𝑛(𝑡)

𝑛

𝑖=1

 

 

where 𝑥(𝑡) is the vibration signal, 𝑖𝑚𝑓𝑖(𝑡)  is the 𝑖𝑡ℎ IMF component in different frequency bands ranging 

from high to low, and 𝑟𝑛(𝑡) is the nth residue of the decomposition process, which is the mean trend of 𝑥(𝑡), 

(9) 
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and n is the number of decomposition steps as well as the total number of IMFs. In order to be successfully 

extracted, IMFs should satisfy two mandatory requirements. Firstly, the number of extrema (including 

maxima and minima) and the number of zero-crossing should be equal or differ at most by one. Secondly, 

the average of the envelopes composed of the maxima and minima should be zero. This decomposition 

process was repeated until the last data series r(t) could not be decomposed, indicating the end of the sifting 

process[19]. Despite the robustness of EMD, it was usually suffered by the mode mixing problem, which 

is defined as either a single IMF consisting of widely disparate scales or signal residing in different IMF 

components[20]. 

To overcome the problem of mode mixing, the ensemble empirical mode decomposition (EEMD) was 

proposed, where Gaussian white noises with finite amplitude are added to the original signal during the 

entire decomposition process. Due to the uniform distribution statistical characteristics of the white noise, 

the signal with white noise becomes continuous in different time scales, and no missing scales are present. 

As a result, mode mixing is effectively eliminated by the EEMD process [18]. It should be noted that, during 

the EEMD process, each individual trial may produce noisy results, but the effect of the added noise can be 

suppressed by large number of ensemble mean computations, in another word, too time consuming to 

implement.  

An improved algorithm, CEEMD, is suggested to improve the computation efficiency. In this algorithm, 

the residue of the added white noises can be extracted from the mixtures of data and white noises via pairs 

of complementary ensemble IMFs with positive and negative added white noises. Although this new 

approach yields IMF with a similar RMS noise to EEMD, it eliminates residue noise in the IMFs and 

overcomes the problem of mode mixing with much more efficiency [14]. The procedure on implementing 

CEEMD is defined as the following:  

 𝑥1 and 𝑥2 are constructed by adding a pair of opposite phase Gaussian white noises 𝑥𝑛 with the same 

amplitude.  

 

{
𝑥1 = 𝑥 + 𝑥𝑛

𝑥2 = 𝑥 − 𝑥𝑛
 

 

 (b) 𝑥1 and 𝑥2 are decomposed by EMD only a few times, and IMF𝑥1 and IMF𝑥2 are ensemble means 

of the corresponding IMF generated from each trial;  

 (c) the average of corresponding component in IMF𝑥1 and IMF𝑥2 is calculated as the CEEMD 

decomposition results[15, 16]; that is,  

 

𝐼𝑀𝐹 =
(𝐼𝑀𝐹𝑥1

 + 𝐼𝑀𝐹𝑥2
)

2
  

 

4.3 Single Value Decomposition (SVD) 

The SVD technique is a matrix decomposed to generate singular values, singular vectors, and their relation 

to SVD.  

Assuming there was a matrix Σ, which had M ×N dimension, and was indicated as: 

𝛴 =  𝐸∆𝑉𝑇 

where 𝐸 = [𝑒1, 𝑒2, 𝑒3, … , 𝑒𝑛] ∈ 𝑅𝑁×𝑁, 𝐸𝑇𝐸 = 𝐼, 𝑉 = [𝑣1, 𝑣2, 𝑣3, … , 𝑣𝑛] ∈ 𝑅𝑀×𝑀 , 𝑉𝑇𝑉 = 𝐼, ∆𝑅𝑁×𝑀 ,  

∆= [𝑑𝑖𝑎𝑔{𝜎1, . . . , 𝜎𝑝}: 0], 𝑝 = 𝑚𝑖𝑛(𝑁,𝑀), 𝑎𝑛𝑑 𝜎1 ≥ 𝜎2  ≥. . . ≥  𝜎𝑝 ≥ 0. The ith left and right singular 

vectors of matrix Σ were vectors ei and vi, respectively. The values of σi were the singular values of the 

matrix Σ[7].  

In this research, CEEMD method is recalled to decompose the roller bearing signals into several Intrinsic 

Mode Functions (IMFs), as shown in. All of the IMFs obtained from CEEMD method then were divided 

into two initial feature vector matrices X and Y  

 

(10) 

(11) 

(12) 
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𝑋 = [

𝐼𝑀𝐹1

𝐼𝑀𝐹2

⋮
𝐼𝑀𝐹𝐽

]  , 𝑌 =

[
 
 
 
𝐼𝑀𝐹𝐽+1

𝐼𝑀𝐹𝐽+2

⋮
𝐼𝑀𝐹𝑛 ]

 
 
 

 

 

where 𝐽 =  𝑛/2 (when n is an even number) and 𝐽 = (𝑛 + 1)/2 (when n is an odd number). Here, from 

the initial feature vector matrices X and Y, the characteristic of the roller bearing vibration signal x(t) could 

be extracted. Additionally, fault feature vectors could be found as the singular values that reflect the nature 

characteristics of the vector matrices X and Y and the roller bearing vibration signal. After obtain fault 

feature vectors, the AeDE-SVM classifier could be used to identify the working condition and fault pattern 

of roller bearing [7, 15, 16].  

Figure 2 showed the flow chart of the roller bearing fault diagnosis method based on CEEMD-SVD and 

AeDE-SVM. 

 

AeDE

SVM parameters  C,  s

Training SVM Model
Training 

Data

Calculating the fitness function

Optimal SVM parameters obtained

Is stop condition satisfied ?

Yes

No

AeDE-SVM

Roller Bearing 

Fault Detection

Testing 

Data

SVD

CEEMD

Roller Bearing

Vibration Signals

 
Figure 2: Roller Bearing Fault Detection Method Based on CEEMD-SVM and AeDE-SVM  

5 EXPERIMENTS AND RESULTS  
5.1 Dataset 

A dataset from the Case Western Reserve University – Bearing Data Center website (CWRUBDCW), under 

Professor K.A.Loparo’s permission, was used in this project to demonstrate the proposed method 

performance. The testing model contained a 2 HP Reliance Electric Motor, a torque transducer/encoder, a 

dynamometer and electronic controllers. An analog to digital converter was also used at 485063 Hz 

sampling rate, while the motor speed was fixed at 1772 rpm. Besides, a deep groove ball bearing (from 

SKF) and drive end bearings, 6205-2RS JEM type, were also used in this test. The test bearing of electro-

discharge machining with fault diameter of 0.007 inches was selected. Four different roller bearing 

conditions were applied in this test in order to provide 80 various vibration signals in each different 

conditions. Finally, 56 groups were randomly selected for training while the remaining was reserved for 

testing. 
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5.2 Experiments and Results 

In fact, a binary AeDE-SVM, as an improved SVM, can only solve 2-class problems, thus, at least 3 AeDE-

SVM must be used to identify 4 different operating conditions of roller bearing. In this experiment, a 

combined classifier, including three binary AeDE-SVMs, has been used to subsequently separate four 

different bearing operating conditions. The AeDE-SVM1 only identified either inner race fault or not. The 

non-fault patterns were then fed to AeDE-SVM2 for recognition of outer race fault. As the same manner, 

the AeDE-SVM3 received the non-fault patterns and classify them as normal condition or ball fault cases. 

The entire classification model was clearly showed in the Figure 3.  

Besides, some other SVM parameter optimization methods, such as genetic algorithm (GA-SVM) and 

particle swarm optimization (PSO-SVM), were also applied in the same way as AeDE-SVM to provide a 

fair performance evaluation comparison. Table 4 showed the summary of optimized SVM parameters as 

well as the performance evaluation among three different classifiers.  

 

Testing Data SVM1

Inner-race

fault
Outer-race

fault
Normal Ball fault

SVM2 SVM3

 
 

Figure 3: Multiple binary SVM classification model 

Table 4: The Summary of different SVM parameter optimization techniques on roller bearing fault detection 

Method 
Training 

samples 

Test 

samples 
Optimal C Optimal s Cost time (s) 

Average Error 

Rate (%) 

AeDE-SVM1 308 132 11715.32  20.64 35.82 0 

PSO-SVM1 308 132 22319.37 30.78 38.10 0 

GA-SVM1 308 132 20456.15 29.15 58.15 0 

AeDE-SVM2 241 99 3309.34  15.34 29.91 0 

PSO-SVM2 241 99 9759.12  16.84 34.80 0.1010 

GA-SVM2 241 99 14545.42 30.67 62.58 0.1010 

AeDE-SVM3 154 66 19601.37  17.60 23.96 0 

PSO-SVM3 154 66 5171.29  8.02 24.87 0 

GA-SVM3 154 66 8005.80     13.50 38.71 0 

With the same training and testing samples, AeDE-SVM perfectly achieved minimum error rate (almost 

0%) while requiring shortest processing time. The difference in average error rate is generally almost 0% 

in all methods, however, the processing time of the AeDE-SVMs in all classification stages were always 

faster than the others. In details, in the first classification stage, all optimized classifiers achieved a great 

average error rate of 0%, AeDE-SVM1 took only 35.82 seconds to recognize 132 testing patterns. This 

computational time was 3 seconds faster than the PSO-SVM1 and even almost 40% faster than GA-SVM1. 

The AeDE-SVM2 even performed 50% faster than GA-SVM2 while still achieving better classification 

accuracy. The results were similar in the final classification stage. 

Moreover, the optimal values for C and sigma for each SVM classifiers in any particular stage were not 

proportional to the cost time and accuracy. The optimal parameters of AeDE-SVM, which provided shortest 

computational time and best accuracy, were always higher than the others, while, those parameters of PSO-

SVM, which provided 2nd shortest computational time, were smallest values among corresponding 

parameters. Therefore, PSO-SVM and GA-SVM parameter optimization algorithm were properly trapped 
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in some local minima with longer optimizing time or more complex decision boundary, compared to global 

minima optimized by AeDE-SVM. 

 
Figure 4: Demonstration of optimization problem. 

Table 5: CEEMD-SVD Feature Extraction and AeDE-SVM Classification Details 

Test samples 
Singular value of fault feature        

s X, x 

AeDE- 

SVM1 

classifier 

AeDE - 

SVM2 

classifier 

AeDE - 

SVM3 

classifier 

Identification 

results 

(1) IR fault 8.373 2.423 1.907 1.698 (+1)   Inner-race fault 

(2) IR fault 8.025 2.423 2.039 1.667 (+1)   Inner-race fault 

(3) IR fault 8.322 2.391 2.095 1.632 (+1)   Inner-race fault 

(4) IR fault 8.308 2.467 2.113 1.654 (+1)   Inner-race fault 

(5) IR fault 8.481 2.4 2.034 1.749 (+1)   Inner-race fault 

(6) IR fault 8.152 2.668 2.038 1.568 (+1)   Inner-race fault 

(7) OR fault 7.831 0.76 0.869 0.619 (-1) (+1)  Outer-race fault 

(8) OR fault 7.746 0.819 0.875 0.531 (-1) (+1)  Outer-race fault 

(9) OR fault 7.57 0.789 0.865 0.638 (-1) (+1)  Outer-race fault 

(10) OR fault 7.652 0.705 0.8 0.564 (-1) (+1)  Outer-race fault 

(11) OR fault 7.782 0.758 0.843 0.614 (-1) (+1)  Outer-race fault 

(12) OR fault 9.069 1.064 0.784 0.546 (-1) (+1)  Outer-race fault 

(13) Normal 4.189 0.234 0.816 0.504 (-1) (-1) (+1) Normal 

(14) Normal 3.995 0.238 0.916 0.538 (-1) (-1) (+1) Normal 

(15) Normal 4.272 0.221 0.876 0.546 (-1) (-1) (+1) Normal 

(16) Normal 3.722 0.238 0.825 0.536 (-1) (-1) (+1) Normal 

(17) Normal 4.043 0.241 0.869 0.527 (-1) (-1) (+1) Normal 

(18) Normal 4.358 0.242 0.86 0.507 (-1) (-1) (+1) Normal 

(19) Ball fault 0.631 0.101 0.987 0.45 (-1) (-1) (-1) Ball fault 

(20) Ball fault 0.633 0.122 1.055 0.379 (-1) (-1) (-1) Ball fault 

(21) Ball fault 0.610 0.095 0.959 0.31 (-1) (-1) (-1) Ball fault 

(22) Ball fault 0.636 0.088 0.898 0.351 (-1) (-1) (-1) Ball fault 

(23) Ball fault 0.619 0.094 1.039 0.38 (-1) (-1) (-1) Ball fault 

(24) Ball fault 0.619 0.146 0.895 0.352 (-1) (-1) (-1) Ball fault 

Besides, Table 5 showed the detailed results of the proposed method in which the CEEMD-SVD feature 

extraction process successfully transformed the time series continuous signal into four-dimensional 

competitive feature vectors in each class. Obviously, the new extracted values in each class were quite 

unique to the others, thus, significantly improved the competitiveness of the input data and generally 

contributed to provide the extremely low average error rate (mostly less then 0.2%).  

6 CONCLUSION  
In this paper, a generalized method for SVM parameter optimization based on AeDE algorithm was firstly 

introduced. Moreover, the integration between CEEMD and SVD provided an efficient feature reduction 

method which transformed a long time series data into a smaller number of highly competitive feature set. 

The roller bearing vibrating signals were used to evaluate the proposed method. As the results, most of the 

classifiers achieved good results (less than 2% of classification error) due to the superior of CEEMD-SVD 

∁/𝜎 

𝐸𝑟𝑟𝑜𝑟 

𝑃𝑆𝑂 

𝐺𝐴 

𝐴𝑒𝐷𝐸 



   THE SUPPORT VECTOR MACHINE PARAMETER OPTIMIZATION METHOD BASED ON  69 

 ADAPTIVE ELITIST DIFFERENTIAL EVOLUTION ALGORITHM AND ITS APPLICATION  

 TO ROLLER BEARING FAULT DIAGNOSIS 

 

© 2018 Trường Đại học Công nghiệp thành phố Hồ Chí Minh 

feature extraction method. By providing the negligible difference of average classification error among 

classifiers, AeDE-SVM showed a great  and stable performance, especially processing time benefit. 
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PHƯƠNG PHÁP TỐI ƯU HÓA THÔNG SỐ MÁY HỖ TRỢ VECTOR DỰA TRÊN 

THUẬT TOÁN AEDE VÀ ỨNG DỤNG ĐỂ CHẨN ĐOÁN HƯ HỎNG Ổ LĂN 

Tóm tắt. Thông số vận hành của máy véc tơ hỗ trợ có ảnh hưởng lớn đến tỉ lệ chính xác trong quá trình 

phân lớp. Việc hiệu chỉnh các thông số này luôn gây khó khăn cho các nhà khoa học. Bài báo này giới thiệu 

một phương pháp tối ưu hóa tham số máy véc tơ hỗ trợ (SVM) dựa vào thuật toán tiến hóa vi phân thích 

ứng (AeDE). Sau đó, bộ phân lớp AeDE-SVM được ứng dụng để chẩn đoán hư hỏng ổ lăn bằng cách kết 

hợp phương pháp CEEMD và phương pháp phân rã giá trị riêng (SVD). Đầu tiên, tín hiệu gia tốc dao động 

được phân tích thành các Instrinsic Mode Function (IMF) bằng phương pháp CEEMD. Sau đó, các ma trận 

thuộc tính khởi tạo được trích xuất từ các hàm IMF bởi kỹ thuật SVD để có được các giá trị riêng. Cuối 

cùng, các giá trị này được sử dụng như véc tơ đầu vào của bộ phân lớp AeDE-SVM. Kết quả thực nghiệm 

cho thấy rằng hệ thống kết hợp giữa bộ phân lớp AeDE-SVM và hệ trích xuất đặc tính CEEMD-SVD cho 

tỉ lệ phân lớp chính xác cao hơn và tiêu tốn ít thời gian hơn so với các phương pháp khác. 

Từ khóa. Thuật toán tiến hóa vi phân thích ứng (AeDE), phương pháp CEEMD, Hư hỏng ổ lăn, Phân rã 

giá trị riêng (SVD), Máy véc tơ hỗ trợ (SVM). 
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