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Abstract. Checking integrity constraints in real-time the database is an important field of investigation. In
this paper, we implement topological integrity constraints depending on which user has chosen an
integrity constraint on different times on many existing integrity constraints of temporal databases. We
suggested using the Hamiltonian paths in directed graphs order to implement a test program on data
simulated by a college's real data. The object needs to satisfy integrity constraints in temporal databases
as students who have enrolled in the subjects. Moreover, the program also monitors the learning process
and advises students to choose courses in the school's training program.
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1 INTRODUCTION

Checking integrity constraints in temporal databases is a problem that many people study. There have
been some approaches to this issue, such as:

* Doucet and et al. [1], [2] performed the process of checking many integrity constraints by sorting
versions and data cohesion on the object-oriented model. Time logic identifies constraints and then
transforms into revisions

* Cordeiro RLF and et al. [3], [4] improved the old method by offering a number of methods such as
time query language defined valid areas of constraints, versions of constraint distinguished over time, the
unbounded points of data are found and version language represented the evolution of schemas.

In this paper, we implemented a test program using the Hamiltonian paths in directed graphs approach as
in [5], [6],[7] to check topological integrity constraints in a temporal database. This approach has studied
how to check multiple integrity constraints of systematic data over time imposed on a temporal database,
instead of constraint on multiple database versions like [3].

Using a data structure is a graph to build tasks to check multiple integrity constraints, called shortlisted:
Topological integrity constraint (TI1C). The integrity constraints are full-state sequences (FSS) that exist in
the temporal database that an object must satisfy FSS during the time updating. Also, every object
at some points can follow one of many integrity constraint versions. At different times released these
versions and they are valid when updating data for the objects. Each version is a full-state sequence, it is a
Hamiltonian path in a direct transition graph (TG).

In the temporary database, there are many versions of integrity that are valid when of update and some
versions that are outdated or newly released. This is quite complicated, to solve this problem
systematically, we use the version diagram (VG) to make and update versions over time, each vertex of
VG is a version. ; Each edge of VG indicates the link between the two versions.

An object first recorded in the database will choose a version (called original version) in existing versions
and must follow the constraints of that version for a fixed period of time in real-time. However, during
this time, an object can be converted to a certain version (based on the set of rule (file) written in the
database, this file is updated over time), but eventually, the object must return to the original version to
end the process of satisfying the constraint and end the data update overtime for it.

This test program can help students register for courses according to the credit system of each semester in
a college. Students can query academic results over time. The rest of the article includes: Section 2
presents some data structures such as transition graph, version graph, the rule set, and their relationships.
Section 3 presents procedures for checking topological integrity constraints. Section 4 implements and
finally the conclusion and future works.
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2 CREATING DATA STRUCTURES

This section presents the data structures used in implementing test programs, including transition
graph, version graph and set of rules.

2.1  Transition graph

Each constraint version is described by a template with statements (see [9]), then converted into a
directed transition graph, which has a starting vertex (outgoing edges only) and an end vertex (no
outgoing edges). Each vertex represents a state of the object, each a directed edge indicates the next
constraint state that the object must follow. The starting vertex is the first constraint for the object and the
end vertex is the last constraint. For example, in Figure 1, representing a version with six constraints, o is
the first constraint, ss is the last constraint.
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Figure 1: Transition graph [8]

The transition state graph must satisfy: There is at least one path from begin vertex to end vertex and
through all the remaining vertices, each vertex only passes once, can check this with the cost of linear-
time [7], [10]. Such paths are Hamiltonian paths in directed graphs [11], we call them full-state sequences
(FSS) and use the procedure SEARCHING_SEQUENCE [7] to search them. For example, in Figure 1
there are two full-state sequences: So, S1, S2, Sz, S4, S5 and So, S1, Sz, Sa, S, Ss.

2.1  Version graph

In temporal multi-version databases, there may be multiple versions of integrity constraints. Use
version graphs (VB) to represent existing and effective versions, it is also updated over time, meaning
there are deleted versions and new versions are created. Each version has many FSS as mentioned in 2.1.
In addition, VB is considered as a hyper-graph in addition to managing versions, it also links to transition
graph (TG) to check the multi-version integrity constraints. In Figure 2, depicting a VB with six vertices
corresponding to six existing and effective versions, each edge has a direction to show an object in the
database being executed in this version, can be transferred to another version. Note that each version in
Figure 2 will have a corresponding TG.

COe—%)
Figure 2. Version graph

An object in the database at time t; is executing the s; version constraint, and by the time t, has
executed a certain state in s;, it can switch to another version s;, if this is written in the set of rules, the
form of rules is written as if-then clauses. This ruleset is updated when new versions are released or
deleted.
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3 THE PROCEDURE CHECKING INTEGRITY CONSTRAINTS
Some of the following procedures are implemented to check multiple topological integrity constraints

[6].
3.1  Procedures on Version graph

e Inserting a version
procedure INSERT-VERSION (v;: version, VG: version graph, TG: transition graph)
begin
insert the new transition rules into set of rules;
insert vertex v; into VG;
based on the new transition rules relating to v; to insert the paths between v; with other vertices in
VG; create TG;
perform procedure SEARCH-SEQUENCE;
update new rule into set of rules;
end,;
e Deleting a version
Deleting a version according to the DELETE-VERSION procedure needs to satisfy:
i) An objects in that version have completed the last state in the corresponding TG.
if) In VB there is at least one version other than the version that needs to be deleted.
procedure DELETE-VERSION (v;: version, TG: transition graph)
begin
if met two conditions (i) and (ii) then
begin
delete the edges go out and go to v;, then delete v;;
delete the corresponding rules in set of rules;
delete TG corresponds to v;;
end
end;

3.2 Procedures on transition graph

e Inserting data of the object
In the procedure INSERT-DAT, the data of object Ob is inserted at the top of the v, version, and Ob
has completed the constraint at vertex si under version vy, and must satisfy a rule in the set of rules. This
is the main problem when inserting data.
procedure INSERT-DATA (si, Sj: vertex, Vm Vo : version, Ob: object, TG: transition graph
corresponding to vy,)
[*Data of Ob is inserted to vertex s; under version v, */
begin
if vertex s; in TG no outgoing edge then rejection message
else /*vertex s is a vertex in TG of version vy, */
if (there is direct path from v, to v, in VG and check in SRs,if met and Ob never once had
transferred to s;)
then insert data of Ob to vertex s; of TG;
else rejection message
end;
e Deleting data of the object
Use the procedures as shown in [5].

3.3 Object checking procedures enforce multiple version integrity constraints
Based on full-state sequences (FSS) to track objects satisfies integrity constraints. The first time an
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object chooses one of FSS to do integrity constraints and must execute in the order of the selected
sequence. However, because of multiple integrity constraints, an object can enforce constraints in
intermediate states (except beginning state and end state in the initially selected FSS), it can pass through
executing another state in another version, as long as a set of rules allows.
e Mark the constraints that the object has finished executing
Each constraint in FSS will be marked with the MARKED_ELEMENTS procedure when an object is
executed.
procedure MARKED _ELEMENTS
I*input: full-state sequences o; of an object Ob,
list C contains integrity constraints from users selected */
begin
for each element ¢; in C
for each o;
mark elements in o; corresponding to ¢; ;
delete the contents of C;
end ;
e  List of constraints that objects can chooses
Procedure LIST_INTEGRITY CONSTRAINTS lists the constraints that an object can select to
execute when the user queries.
procedure LIST_INTEGRITY CONSTRAINTS

I*input: full-state sequences o; of an object Ob,
output: List C contains integrity constraints from
users selected */

begin
create an empty list L;
for each o; of an object Ob

copy elements are not marked in o to L;
keep the various elements in L;
if L is empty then

message “Ob has fully executed”;
else

print L;

end ;

e List of constraints that the object has satisfied

Procedure CHECKING, list the constraints that an object has satisfied when the query or message

object has fully satisfied constraints.

procedure CHECKING
I*input: full-state sequences o; of an object Ob */
begin
create an empty list Temp;
if the elements in a sequence of o; have been marked then message
“It has completed ;
else for each o
copy the marked elements to Temp;
remove duplicate elements in Temp; show Temp;
end;

4 IMPLEMENTING

This section implements a test program for students to enroll in the semester credit-based courses of
information technology faculty of a college. First students choose a training program according to a
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Server 2008R2.

4.1

4.2

In Figure 4, performing the version update task and updating into the set of rules, if it is the new

Relational schemas

Schemas to check TIC

PHIEN_BAN_SV (MaSV, MaMH, StartDate,MaPB, EndDate, KetQua),
PHIEN_BAN (MaPB, EffectiveDate, EndDate),

MON_HOC (MaMH, MaPB, TenMH),

STATE_SEQUENCE (MaSV, FullStateSequence, MaPB).

Other schemas for faculties, student registration and student learning outcomes
KHOA(MaKhoa, TenKhoa)

LOP(MaLop, TenLop, MaKhoa, HeDaoTao, SiSo)

SINH_VIEN(MaSV, HoTenSV, Nam, NgaySinh, NoiSinh, NamHoc, NamKT, Pass)
MON_THAY_THE(MaMH, PbCu,MaMH_Moi, PbMoi)
CHON_CHUONG_TRINH(MaSV, MaPB, NgayChon,NamHoc)
DANG_KY(MaDKy, MaSV, NgayDKy, HocKy)
CHUONG_TRINH_D_KY(MaDKy, MaMH,MaPB, NgayBDHoc, NgayKTHoc)

Interface and tasks
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Cap nhat hoes
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Ngudi dang truy cdp: Admin

Figure 3. Interface for administrator
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Figure 4. Creating the new versions

version, also insert into the MON_THAY_THE schema.
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Figure 5. Students choose the training program.

In Figure 5, students choose a training program (version) in many of the college's programs that
are now in effect and studied throughout the process until graduation.
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Figure 6. Students register for new subjects

The functions in Figure 6 perform checking integrity constraints on full-state sequences.
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Figure 7. The function of updating subject results for students

The functions in Figure 7 update the results. If the score of the subject of an object (the student) is
satisfactory when it has completed constraints on a state (subject) in FSS but otherwise, it has not
completed the constraints. The student must then re-enroll in this subject until the required results are
obtained.
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Figure 8. Query all students' learning results

In Figure 8, perform the CHECKING procedure to check whether the object has fully satisfied the TIC
or listed the subjects that have passed (training requirements).

CONCLUSIONS

This paper has used graph structure and the Hamiltonian paths in directed graphs to track the process
of checking multiple topological integrity constraints on the temporal database. The problem of finding
the Hamiltonian paths in a directed graph is NP-complete [11]. But in this program, the complexity of the
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procedure SEARCH_SEQUENCE is only O(k "), (see details in [7]).

Versions are training programs that are released over time. In a school, the training of
one discipline usually lasts 3 to 4 years. The current trend, the training program will change each year, so
students can learn new subjects instead of studying subjects follow the old training program. To make this
systematically, the article has implemented a test program on data simulated by the current training
program at a college of information technology faculty. This program manages students who enroll in
credit and annuity academic programs and monitor their academic progress as well as advising students to
register for courses.

The program uses structures: transition state graph, version graph and set of rules that allow
students to transfer to equivalent subjects of other programs (students do not have to wait to save time
study), and use the orderly Hamiltonian paths on the transition graph to build the full range of constraints
that objects in the database must follow in real-time.

The program initially has prospects, encouragement, and suggestions from colleagues, future
research direction is:
- Implementing programs for other faculties, supplementing the detailed curriculum of the subject,
reference books, teaching teachers to help students consider the general curriculum.
- Develop procedures to check for inconsistency or duplication of a set of rules.
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