
Tạp chí Khoa học và Công nghệ, Số 38, 2019

© 2019 Trường Đại học Công nghiệp Thành phố Hồ Chí Minh

IMPLEMENTING TOPOLOGICAL INTEGRITY CONSTRAINTS ON

TEMPORAL DATABASES

CHUNG PHAM VAN

Faculty of Information Technology, Industrial University of Ho Chi Minh City;

pchung@iuh.edu.vn

Abstract. Checking integrity constraints in real-time the database is an important field of investigation. In

this paper, we implement topological integrity constraints depending on which user has chosen an

integrity constraint on different times on many existing integrity constraints of temporal databases. We
suggested using the Hamiltonian paths in directed graphs order to implement a test program on data

simulated by a college's real data. The object needs to satisfy integrity constraints in temporal databases

as students who have enrolled in the subjects. Moreover, the program also monitors the learning process

and advises students to choose courses in the school's training program.
Keywords. Full-state sequence, topological integrity constraints, transition graph, version graph.

1 INTRODUCTION

Checking integrity constraints in temporal databases is a problem that many people study. There have

been some approaches to this issue, such as:

• Doucet and et al. [1], [2] performed the process of checking many integrity constraints by sorting

versions and data cohesion on the object-oriented model. Time logic identifies constraints and then
transforms into revisions

• Cordeiro RLF and et al. [3], [4] improved the old method by offering a number of methods such as

time query language defined valid areas of constraints, versions of constraint distinguished over time, the
unbounded points of data are found and version language represented the evolution of schemas.

In this paper, we implemented a test program using the Hamiltonian paths in directed graphs approach as

in [5], [6],[7] to check topological integrity constraints in a temporal database. This approach has studied

how to check multiple integrity constraints of systematic data over time imposed on a temporal database,

instead of constraint on multiple database versions like [3].

Using a data structure is a graph to build tasks to check multiple integrity constraints, called shortlisted:

Topological integrity constraint (TIC). The integrity constraints are full-state sequences (FSS) that exist in

the temporal database that an object must satisfy FSS during the time updating. Also, every object

at some points can follow one of many integrity constraint versions. At different times released these

versions and they are valid when updating data for the objects. Each version is a full-state sequence, it is a

Hamiltonian path in a direct transition graph (TG).

In the temporary database, there are many versions of integrity that are valid when of update and some

versions that are outdated or newly released. This is quite complicated, to solve this problem

systematically, we use the version diagram (VG) to make and update versions over time, each vertex of

VG is a version. ; Each edge of VG indicates the link between the two versions.

An object first recorded in the database will choose a version (called original version) in existing versions

and must follow the constraints of that version for a fixed period of time in real-time. However, during

this time, an object can be converted to a certain version (based on the set of rule (file) written in the

database, this file is updated over time), but eventually, the object must return to the original version to

end the process of satisfying the constraint and end the data update overtime for it.

This test program can help students register for courses according to the credit system of each semester in

a college. Students can query academic results over time. The rest of the article includes: Section 2

presents some data structures such as transition graph, version graph, the rule set, and their relationships.

Section 3 presents procedures for checking topological integrity constraints. Section 4 implements and

finally the conclusion and future works.

mailto:pchung@iuh.edu.vn

 IMPLEMENTING TOPOLOGICAL INTEGRITY CONSTRAINTS ON 129

 TEMPORAL DATABASES

© 2019 Trường Đại học Công nghiệp Thành phố Hồ Chí Minh

2 CREATING DATA STRUCTURES

This section presents the data structures used in implementing test programs, including transition

graph, version graph and set of rules.

2.1 Transition graph

Each constraint version is described by a template with statements (see [9]), then converted into a

directed transition graph, which has a starting vertex (outgoing edges only) and an end vertex (no

outgoing edges). Each vertex represents a state of the object, each a directed edge indicates the next

constraint state that the object must follow. The starting vertex is the first constraint for the object and the

end vertex is the last constraint. For example, in Figure 1, representing a version with six constraints, s0 is

the first constraint, s5 is the last constraint.

Figure 1: Transition graph [8]

The transition state graph must satisfy: There is at least one path from begin vertex to end vertex and

through all the remaining vertices, each vertex only passes once, can check this with the cost of linear-

time [7], [10]. Such paths are Hamiltonian paths in directed graphs [11], we call them full-state sequences

(FSS) and use the procedure SEARCHING_SEQUENCE [7] to search them. For example, in Figure 1

there are two full-state sequences: s0, s1, s2, s3, s4, s5 and s0, s1, s2, s4, s3, s5.

2.1 Version graph

In temporal multi-version databases, there may be multiple versions of integrity constraints. Use

version graphs (VB) to represent existing and effective versions, it is also updated over time, meaning

there are deleted versions and new versions are created. Each version has many FSS as mentioned in 2.1.

In addition, VB is considered as a hyper-graph in addition to managing versions, it also links to transition

graph (TG) to check the multi-version integrity constraints. In Figure 2, depicting a VB with six vertices

corresponding to six existing and effective versions, each edge has a direction to show an object in the

database being executed in this version, can be transferred to another version. Note that each version in

Figure 2 will have a corresponding TG.

An object in the database at time t1 is executing the si version constraint, and by the time t2 has

executed a certain state in si, it can switch to another version sj, if this is written in the set of rules, the

form of rules is written as if-then clauses. This ruleset is updated when new versions are released or

deleted.

 s0

 s1 s5 s2

 s3

 s4

Figure 2. Version graph

 v
5

 v
0

 v
2

 v
3

 v
4

 v
1

130 IMPLEMENTING TOPOLOGICAL INTEGRITY CONSTRAINTS ON

 TEMPORAL DATABASES

© 2019 Trường Đại học Công nghiệp Thành phố Hồ Chí Minh

3 THE PROCEDURE CHECKING INTEGRITY CONSTRAINTS

Some of the following procedures are implemented to check multiple topological integrity constraints

[6].

3.1 Procedures on Version graph

 Inserting a version

 procedure INSERT-VERSION (vi: version, VG: version graph, TG: transition graph)

 begin

insert the new transition rules into set of rules;

insert vertex vi into VG;

based on the new transition rules relating to vi to insert the paths between vi with other vertices in
VG; create TG;

perform procedure SEARCH-SEQUENCE;

update new rule into set of rules;

 end;

 Deleting a version

 Deleting a version according to the DELETE-VERSION procedure needs to satisfy:

i) An objects in that version have completed the last state in the corresponding TG.

ii) In VB there is at least one version other than the version that needs to be deleted.

procedure DELETE-VERSION (vi: version, TG: transition graph)

 begin

 if met two conditions (i) and (ii) then

 begin

 delete the edges go out and go to vi, then delete vi;

 delete the corresponding rules in set of rules;

 delete TG corresponds to vi;

 end

 end;

3.2 Procedures on transition graph

 Inserting data of the object

In the procedure INSERT-DAT, the data of object Ob is inserted at the top of the vn version, and Ob

has completed the constraint at vertex si under version vm, and must satisfy a rule in the set of rules. This

is the main problem when inserting data.

procedure INSERT-DATA (si, sj: vertex, vm ,vn : version, Ob: object, TG: transition graph

corresponding to vm)

 /*Data of Ob is inserted to vertex sj under version vn */

 begin

 if vertex si in TG no outgoing edge then rejection message
 else /*vertex sk is a vertex in TG of version vm */

 if (there is direct path from vm to vn in VG and check in SRs,if met and Ob never once had

transferred to sj)
 then insert data of Ob to vertex si of TG;

 else rejection message

 end;

 Deleting data of the object

Use the procedures as shown in [5].

3.3 Object checking procedures enforce multiple version integrity constraints

Based on full-state sequences (FSS) to track objects satisfies integrity constraints. The first time an

 IMPLEMENTING TOPOLOGICAL INTEGRITY CONSTRAINTS ON 131

 TEMPORAL DATABASES

© 2019 Trường Đại học Công nghiệp Thành phố Hồ Chí Minh

object chooses one of FSS to do integrity constraints and must execute in the order of the selected

sequence. However, because of multiple integrity constraints, an object can enforce constraints in

intermediate states (except beginning state and end state in the initially selected FSS), it can pass through

executing another state in another version, as long as a set of rules allows.

 Mark the constraints that the object has finished executing

Each constraint in FSS will be marked with the MARKED_ELEMENTS procedure when an object is

executed.

 procedure MARKED_ELEMENTS

 /*input: full-state sequences i of an object Ob,

 list C contains integrity constraints from users selected */

 begin

 for each element ci in C

 for each i

 mark elements in i corresponding to ci ;
 delete the contents of C;

 end ;

 List of constraints that objects can chooses

Procedure LIST_INTEGRITY CONSTRAINTS lists the constraints that an object can select to

execute when the user queries.

 procedure LIST_INTEGRITY CONSTRAINTS

 /*input: full-state sequences i of an object Ob,
 output: List C contains integrity constraints from

 users selected */

 begin

 create an empty list L;

 for each i of an object Ob

 copy elements are not marked in i to L;
 keep the various elements in L;

 if L is empty then
 message “Ob has fully executed”;

 else

 print L;

 end ;

 List of constraints that the object has satisfied

Procedure CHECKING, list the constraints that an object has satisfied when the query or message

object has fully satisfied constraints.

 procedure CHECKING

 /*input: full-state sequences i of an object Ob */

 begin

 create an empty list Temp;

 if the elements in a sequence of i have been marked then message
 “It has completed ”;

 else for each i
 copy the marked elements to Temp;

 remove duplicate elements in Temp; show Temp;

 end;

4 IMPLEMENTING

This section implements a test program for students to enroll in the semester credit-based courses of

information technology faculty of a college. First students choose a training program according to a

132 IMPLEMENTING TOPOLOGICAL INTEGRITY CONSTRAINTS ON

 TEMPORAL DATABASES

© 2019 Trường Đại học Công nghiệp Thành phố Hồ Chí Minh

specific discipline, then they can choose the subjects in other programs when the training program allows

(set of rules). The tool selected to build the program is Windows Form C # (Visual. Net 2010) and SQL

Server 2008R2.

4.1 Relational schemas

 Schemas to check TIC

PHIEN_BAN_SV (MaSV, MaMH, StartDate,MaPB, EndDate, KetQua),

 PHIEN_BAN (MaPB, EffectiveDate, EndDate),
 MON_HOC (MaMH, MaPB, TenMH),

 STATE_SEQUENCE (MaSV, FullStateSequence, MaPB).

 Other schemas for faculties, student registration and student learning outcomes

 KHOA(MaKhoa, TenKhoa)

LOP(MaLop, TenLop, MaKhoa, HeDaoTao, SiSo)

SINH_VIEN(MaSV, HoTenSV, Nam, NgaySinh, NoiSinh, NamHoc, NamKT, Pass)
MON_THAY_THE(MaMH, PbCu,MaMH_Moi, PbMoi)

CHON_CHUONG_TRINH(MaSV, MaPB, NgayChon,NamHoc)

DANG_KY(MaDKy, MaSV, NgayDKy, HocKy)

CHUONG_TRINH_D_KY(MaDKy, MaMH,MaPB, NgayBDHoc, NgayKTHoc)

4.2 Interface and tasks

Figure 3. Interface for administrator

Figure 4. Creating the new versions

In Figure 4, performing the version update task and updating into the set of rules, if it is the new

version, also insert into the MON_THAY_THE schema.

 IMPLEMENTING TOPOLOGICAL INTEGRITY CONSTRAINTS ON 133

 TEMPORAL DATABASES

© 2019 Trường Đại học Công nghiệp Thành phố Hồ Chí Minh

Figure 5. Students choose the training program.

 In Figure 5, students choose a training program (version) in many of the college's programs that

are now in effect and studied throughout the process until graduation.

Figure 6. Students register for new subjects

 The functions in Figure 6 perform checking integrity constraints on full-state sequences.

134 IMPLEMENTING TOPOLOGICAL INTEGRITY CONSTRAINTS ON

 TEMPORAL DATABASES

© 2019 Trường Đại học Công nghiệp Thành phố Hồ Chí Minh

Figure 7. The function of updating subject results for students

 The functions in Figure 7 update the results. If the score of the subject of an object (the student) is

satisfactory when it has completed constraints on a state (subject) in FSS but otherwise, it has not

completed the constraints. The student must then re-enroll in this subject until the required results are

obtained.

Figure 8. Query all students' learning results

In Figure 8, perform the CHECKING procedure to check whether the object has fully satisfied the TIC

or listed the subjects that have passed (training requirements).

CONCLUSIONS

This paper has used graph structure and the Hamiltonian paths in directed graphs to track the process

of checking multiple topological integrity constraints on the temporal database. The problem of finding

the Hamiltonian paths in a directed graph is NP-complete [11]. But in this program, the complexity of the

 IMPLEMENTING TOPOLOGICAL INTEGRITY CONSTRAINTS ON 135

 TEMPORAL DATABASES

© 2019 Trường Đại học Công nghiệp Thành phố Hồ Chí Minh

procedure SEARCH_SEQUENCE is only O(k
n-2

), (see details in [7]).

 Versions are training programs that are released over time. In a school, the training of

one discipline usually lasts 3 to 4 years. The current trend, the training program will change each year, so

students can learn new subjects instead of studying subjects follow the old training program. To make this

systematically, the article has implemented a test program on data simulated by the current training

program at a college of information technology faculty. This program manages students who enroll in

credit and annuity academic programs and monitor their academic progress as well as advising students to

register for courses.

 The program uses structures: transition state graph, version graph and set of rules that allow

students to transfer to equivalent subjects of other programs (students do not have to wait to save time

study), and use the orderly Hamiltonian paths on the transition graph to build the full range of constraints

that objects in the database must follow in real-time.

 The program initially has prospects, encouragement, and suggestions from colleagues, future

research direction is:

- Implementing programs for other faculties, supplementing the detailed curriculum of the subject,

reference books, teaching teachers to help students consider the general curriculum.

- Develop procedures to check for inconsistency or duplication of a set of rules.

REFERENCES

[1] Doucet A., Fauvet M., Ganarski S., Jomier G., Monties S. Using database versions to implement temporal

integrity constraints, In Workshop, Constraint database and applications, Proceedings, Greece, (1997) 219-233.

[2] Doucet A., Monties S. Versions of integrity constraints in multiversion databases, in book title: Database and

expert systems applications, (1997) 252-261.

[3] Cordeiro, R. L. F., Santos C. S., Edelweiss N. Integrity constraint for temporal versioned model: classification,

modeling and verification, in WTDBD, Proceedings Brasilia, Brazil, (2004) 67-72.

[4] Cordeio, R. L. F., Santos C., Edelweiss N. – TVCL Temporal version constraints language (2006), Available at:

http://citeseerx.ist.psu.edu/viewdoc

[5] Chung Pham Van, Phong Vu Thanh, Checking temporal integrity constraints in temporal databases depending on

user selection, Journal science and technology, 52 (4A) (2014) 160-169.

[6] Chung Pham Van, Multiple Versions Topological Integrity Constraints Imposed on Objects in Real Time

Databases, The International Conference on Advanced Technology and Sustainable Development ICATSD2016.

[7] Chung P.V. Phong V.T., Checking Topological Intergity Constraints Impose on Objects in Real Time Databases,

The Conference on Information and Computer Science (NICS2015), Publisher IEEE 2015.

[8] Michael Gertz, Udo Lipeck, “Temporal” Integrity constraints in temporal databases, in Proceedings of the

International workshop on temporal databases Sept 1995.

[9] Chung P., Tuan Anh D. Implementing a query sublanguage for temporal clinical database systems, Proc. of

MUSIC2005, Petaling Jaya, Nov. (2005)14-26.

[10] Pascal Welke, Simple Necessary Conditions for the Existence of a Hamiltonian Path with Applications to

Cactus Graphs, Informatik III, University of Bonn, Germany, 5 Sep 2017.

[11] Robert Sedgewick, Kevin Wayne. Algorithms (4th edition.). Addison-Wesley Professional, ISBN 978-0-321-

57351-3, (2011), pp. 566-585.

Ngày nhận bài:31/07/2019

Ngày chấp nhận đăng:01/10/2019

http://citeseerx.ist.psu.edu/viewdoc
https://ieeexplore.ieee.org/xpl/conhome/7297714/proceeding
https://ieeexplore.ieee.org/xpl/conhome/7297714/proceeding
https://ieeexplore.ieee.org/xpl/conhome/7297714/proceeding
http://www.informatik.uni-trier.de/~ley/db/conf/tdb/tdb95.html#GertzL95

