Tap chi Khoa hoc va Cong nghé, Sé 38, 2019

IMPLEMENTING TOPOLOGICAL INTEGRITY CONSTRAINTS ON
TEMPORAL DATABASES

CHUNG PHAM VAN
Faculty of Information Technology, Industrial University of Ho Chi Minh City;
pchung@iuh.edu.vn

Abstract. Checking integrity constraints in real-time the database is an important field of investigation. In
this paper, we implement topological integrity constraints depending on which user has chosen an
integrity constraint on different times on many existing integrity constraints of temporal databases. We
suggested using the Hamiltonian paths in directed graphs order to implement a test program on data
simulated by a college's real data. The object needs to satisfy integrity constraints in temporal databases
as students who have enrolled in the subjects. Moreover, the program also monitors the learning process
and advises students to choose courses in the school's training program.

Keywords. Full-state sequence, topological integrity constraints, transition graph, version graph.

1 INTRODUCTION

Checking integrity constraints in temporal databases is a problem that many people study. There have
been some approaches to this issue, such as:

* Doucet and et al. [1], [2] performed the process of checking many integrity constraints by sorting
versions and data cohesion on the object-oriented model. Time logic identifies constraints and then
transforms into revisions

* Cordeiro RLF and et al. [3], [4] improved the old method by offering a number of methods such as
time query language defined valid areas of constraints, versions of constraint distinguished over time, the
unbounded points of data are found and version language represented the evolution of schemas.

In this paper, we implemented a test program using the Hamiltonian paths in directed graphs approach as
in [5], [6],[7] to check topological integrity constraints in a temporal database. This approach has studied
how to check multiple integrity constraints of systematic data over time imposed on a temporal database,
instead of constraint on multiple database versions like [3].

Using a data structure is a graph to build tasks to check multiple integrity constraints, called shortlisted:
Topological integrity constraint (TI1C). The integrity constraints are full-state sequences (FSS) that exist in
the temporal database that an object must satisfy FSS during the time updating. Also, every object
at some points can follow one of many integrity constraint versions. At different times released these
versions and they are valid when updating data for the objects. Each version is a full-state sequence, it is a
Hamiltonian path in a direct transition graph (TG).

In the temporary database, there are many versions of integrity that are valid when of update and some
versions that are outdated or newly released. This is quite complicated, to solve this problem
systematically, we use the version diagram (VG) to make and update versions over time, each vertex of
VG is a version. ; Each edge of VG indicates the link between the two versions.

An object first recorded in the database will choose a version (called original version) in existing versions
and must follow the constraints of that version for a fixed period of time in real-time. However, during
this time, an object can be converted to a certain version (based on the set of rule (file) written in the
database, this file is updated over time), but eventually, the object must return to the original version to
end the process of satisfying the constraint and end the data update overtime for it.

This test program can help students register for courses according to the credit system of each semester in
a college. Students can query academic results over time. The rest of the article includes: Section 2
presents some data structures such as transition graph, version graph, the rule set, and their relationships.
Section 3 presents procedures for checking topological integrity constraints. Section 4 implements and
finally the conclusion and future works.

© 2019 Trudng Pai hoc Cong nghiép Thanh ph H6 Chi Minh

mailto:pchung@iuh.edu.vn

IMPLEMENTING TOPOLOGICAL INTEGRITY CONSTRAINTS ON 129
TEMPORAL DATABASES

2 CREATING DATA STRUCTURES

This section presents the data structures used in implementing test programs, including transition
graph, version graph and set of rules.

2.1 Transition graph

Each constraint version is described by a template with statements (see [9]), then converted into a
directed transition graph, which has a starting vertex (outgoing edges only) and an end vertex (no
outgoing edges). Each vertex represents a state of the object, each a directed edge indicates the next
constraint state that the object must follow. The starting vertex is the first constraint for the object and the
end vertex is the last constraint. For example, in Figure 1, representing a version with six constraints, o is
the first constraint, ss is the last constraint.

ﬁa@ﬁ

Figure 1: Transition graph [8]

The transition state graph must satisfy: There is at least one path from begin vertex to end vertex and
through all the remaining vertices, each vertex only passes once, can check this with the cost of linear-
time [7], [10]. Such paths are Hamiltonian paths in directed graphs [11], we call them full-state sequences
(FSS) and use the procedure SEARCHING_SEQUENCE [7] to search them. For example, in Figure 1
there are two full-state sequences: So, S1, S2, Sz, S4, S5 and So, S1, Sz, Sa, S, Ss.

2.1 Version graph

In temporal multi-version databases, there may be multiple versions of integrity constraints. Use
version graphs (VB) to represent existing and effective versions, it is also updated over time, meaning
there are deleted versions and new versions are created. Each version has many FSS as mentioned in 2.1.
In addition, VB is considered as a hyper-graph in addition to managing versions, it also links to transition
graph (TG) to check the multi-version integrity constraints. In Figure 2, depicting a VB with six vertices
corresponding to six existing and effective versions, each edge has a direction to show an object in the
database being executed in this version, can be transferred to another version. Note that each version in
Figure 2 will have a corresponding TG.

COe—%)
Figure 2. Version graph

An object in the database at time t; is executing the s; version constraint, and by the time t, has
executed a certain state in s;, it can switch to another version s;, if this is written in the set of rules, the
form of rules is written as if-then clauses. This ruleset is updated when new versions are released or
deleted.

© 2019 Trudng Pai hoc Cong nghiép Thanh phd H6 Chi Minh

130 IMPLEMENTING TOPOLOGICAL INTEGRITY CONSTRAINTS ON
TEMPORAL DATABASES

3 THE PROCEDURE CHECKING INTEGRITY CONSTRAINTS
Some of the following procedures are implemented to check multiple topological integrity constraints

[6].
3.1 Procedures on Version graph

e Inserting a version
procedure INSERT-VERSION (v;: version, VG: version graph, TG: transition graph)
begin
insert the new transition rules into set of rules;
insert vertex v; into VG;
based on the new transition rules relating to v; to insert the paths between v; with other vertices in
VG; create TG;
perform procedure SEARCH-SEQUENCE;
update new rule into set of rules;
end,;
e Deleting a version
Deleting a version according to the DELETE-VERSION procedure needs to satisfy:
i) An objects in that version have completed the last state in the corresponding TG.
if) In VB there is at least one version other than the version that needs to be deleted.
procedure DELETE-VERSION (v;: version, TG: transition graph)
begin
if met two conditions (i) and (ii) then
begin
delete the edges go out and go to v;, then delete v;;
delete the corresponding rules in set of rules;
delete TG corresponds to v;;
end
end;

3.2 Procedures on transition graph

e Inserting data of the object
In the procedure INSERT-DAT, the data of object Ob is inserted at the top of the v, version, and Ob
has completed the constraint at vertex si under version vy, and must satisfy a rule in the set of rules. This
is the main problem when inserting data.
procedure INSERT-DATA (si, Sj: vertex, Vm Vo : version, Ob: object, TG: transition graph
corresponding to vy,)
[*Data of Ob is inserted to vertex s; under version v, */
begin
if vertex s; in TG no outgoing edge then rejection message
else /*vertex s is a vertex in TG of version vy, */
if (there is direct path from v, to v, in VG and check in SRs,if met and Ob never once had
transferred to s;)
then insert data of Ob to vertex s; of TG;
else rejection message
end;
e Deleting data of the object
Use the procedures as shown in [5].

3.3 Object checking procedures enforce multiple version integrity constraints
Based on full-state sequences (FSS) to track objects satisfies integrity constraints. The first time an

© 2019 Trudng Pai hoc Cong nghiép Thanh ph H6 Chi Minh

IMPLEMENTING TOPOLOGICAL INTEGRITY CONSTRAINTS ON 131
TEMPORAL DATABASES

object chooses one of FSS to do integrity constraints and must execute in the order of the selected
sequence. However, because of multiple integrity constraints, an object can enforce constraints in
intermediate states (except beginning state and end state in the initially selected FSS), it can pass through
executing another state in another version, as long as a set of rules allows.
e Mark the constraints that the object has finished executing
Each constraint in FSS will be marked with the MARKED_ELEMENTS procedure when an object is
executed.
procedure MARKED _ELEMENTS
I*input: full-state sequences o; of an object Ob,
list C contains integrity constraints from users selected */
begin
for each element ¢; in C
for each o;
mark elements in o; corresponding to ¢; ;
delete the contents of C;
end ;
e List of constraints that objects can chooses
Procedure LIST_INTEGRITY CONSTRAINTS lists the constraints that an object can select to
execute when the user queries.
procedure LIST_INTEGRITY CONSTRAINTS

I*input: full-state sequences o; of an object Ob,
output: List C contains integrity constraints from
users selected */

begin
create an empty list L;
for each o; of an object Ob

copy elements are not marked in o to L;
keep the various elements in L;
if L is empty then

message “Ob has fully executed”;
else

print L;

end ;

e List of constraints that the object has satisfied

Procedure CHECKING, list the constraints that an object has satisfied when the query or message

object has fully satisfied constraints.

procedure CHECKING
I*input: full-state sequences o; of an object Ob */
begin
create an empty list Temp;
if the elements in a sequence of o; have been marked then message
“It has completed ;
else for each o
copy the marked elements to Temp;
remove duplicate elements in Temp; show Temp;
end;

4 IMPLEMENTING

This section implements a test program for students to enroll in the semester credit-based courses of
information technology faculty of a college. First students choose a training program according to a

© 2019 Trudng Pai hoc Cong nghiép Thanh phd H6 Chi Minh

132

specific discipline, then they can choose the subjects in other programs when the training program allows
(set of rules). The tool selected to build the program is Windows Form C # (Visual. Net 2010) and SQL

IMPLEMENTING TOPOLOGICAL INTEGRITY CONSTRAINTS ON
TEMPORAL DATABASES

Server 2008R2.

4.1

4.2

In Figure 4, performing the version update task and updating into the set of rules, if it is the new

Relational schemas

Schemas to check TIC

PHIEN_BAN_SV (MaSV, MaMH, StartDate,MaPB, EndDate, KetQua),
PHIEN_BAN (MaPB, EffectiveDate, EndDate),

MON_HOC (MaMH, MaPB, TenMH),

STATE_SEQUENCE (MaSV, FullStateSequence, MaPB).

Other schemas for faculties, student registration and student learning outcomes
KHOA(MaKhoa, TenKhoa)

LOP(MaLop, TenLop, MaKhoa, HeDaoTao, SiSo)

SINH_VIEN(MaSV, HoTenSV, Nam, NgaySinh, NoiSinh, NamHoc, NamKT, Pass)
MON_THAY_THE(MaMH, PbCu,MaMH_Moi, PbMoi)
CHON_CHUONG_TRINH(MaSV, MaPB, NgayChon,NamHoc)
DANG_KY(MaDKy, MaSV, NgayDKy, HocKy)
CHUONG_TRINH_D_KY(MaDKy, MaMH,MaPB, NgayBDHoc, NgayKTHoc)

Interface and tasks

Towrong Cue ahng wy ThUAT LG To Traog e —

Qudes trd | Sheahs wleee Thoat

Tamen o busvurnnny Twkenks boase - EC—— = -

Cap nhat hoes
Cap nhat lop

Cap Nhat mbn hoe
CHp Hhbt sinh vidn
Chp ohar Sido

Ngudi dang truy cdp: Admin

Figure 3. Interface for administrator

e e |

XEM VA TAO MOI CHUCONG TRINH DAOC TAD

Mon <t mad®: 1ot 118000 bomn Mire uay Miveny Ay v

I

Figure 4. Creating the new versions

version, also insert into the MON_THAY_THE schema.

© 2019 Trudng Pai hoc Cong nghiép Thanh ph H6 Chi Minh

IMPLEMENTING TOPOLOGICAL INTEGRITY CONSTRAINTS ON 133

TEMPORAL DATABASES

rote Can tlng KF ubt by Seong e e
Sinh vién: Nguyédn An Binh

Hoc dgp: 14CD-TP
Thudc khoa: Cong nghé Thong tin
(Da chon IO winh hoc: 12345 6)

I T2/2017 -

Ny
etz tim e lien csbe: 1 triedhs (rehdem hoe tbvibe) oo hml s

: |

Ay wdvors Ok troarg e 10 Wik Blles i)
B e T -
FOwne gobwe Ppe:

| Cltng rahd Thieg tin
g T L

58 vhe wbvd
“

A - ¥ ey ety b
» LB ey ool w0 e

FIDOIMS 1T My Loias

BT L TLE L e —

[BIOGIML 14 | e vty A Mt

Ot v

| 2am
A
208

2
3
“ 27

Figure 5. Students choose the training program.

In Figure 5, students choose a training program (version) in many of the college's programs that
are now in effect and studied throughout the process until graduation.

M3 mon hoo 3102061100 Tén mon hoo Lap Trinh Can Ban

56 tin ohi |4 C L ALY thuyit, The hinh, Ty hoo) 2.2.6

Khon phidi hoa: | 141 oh .|

Thay cho ode mon

Ches mbn hidn b
Ma 00 Tan mon
2102021018 | Cung ofip din

HOZ20061100 Lo Tinh Can Ban

Thuo tap Cong naghd may trang phuo 1

2105052004

OGOG1 105
A106o61107
2106062108
J0GOG2 100
2102022018
5 —

Nauydn phu lidu dot may)
Al vl chuvdn nadnh cong nuhd mey
KO thadt W Winh v C/C

Pl cxding mdy tinh

Cau tie 9 du v gidi thudt

LOp tinh audn Iy

K9 thudt nd

An 0B 80 SOnG nuhidn VA mdi tnkng

NN = « -

[um | [wnoeg | [them | [soa xo8 | [ey | [

Figure 6. Students register for new subjects

The functions in Figure 6 perform checking integrity constraints on full-state sequences.

© 2019 Trudng Pai hoc Cong nghiép Thanh phd H6 Chi Minh

134 IMPLEMENTING TOPOLOGICAL INTEGRITY CONSTRAINTS ON
TEMPORAL DATABASES

Nty nhap Jahfim: OO 772007

Chon mon hoo oo nhdgs Jfen TR R Y RIL Y -

e
Cuo dAng Cong nghd phlin m&m khan 2014 (14C0-T) | Bda dbm [mhae me |
A i mmng khos 2015 (18C0 TM)
nEhe Phan msm khod 2016 (15001 1Y) 36
O ALY CuAn 1 many khod 2016 (16C0-TM) Pidm thi i
O AR CONG NG Bhan s khod 2016 (180T

L& th 11

() [Thos |

FIO CQudin i o B Ol o

> 1HO0 007 | Tran Bao Chinng pria R Bandie ot

1HO001T008 | Naguy&n Van Hia
16001013 | Nguydn Quoo Cudng

15001014 | Nguydn Van Hong =0 Noay ""’"" ELALL
15001038 | AL Trung Kien aJats il

THO0T0LT | Vrudng Ngoe Chiung

THO00T004 Nguydn Gumng Mo

16001164 00 Evio Muy

TH001226 Mhan Dinh Chung {
18001201 Nguydn Trang Duang |
16001232 | NgO Qudo Gudng
18001238 | MNguydin |rang Khanh |
THO0T240 Nguydn Trang Hida

Figure 7. The function of updating subject results for students

The functions in Figure 7 update the results. If the score of the subject of an object (the student) is
satisfactory when it has completed constraints on a state (subject) in FSS but otherwise, it has not
completed the constraints. The student must then re-enroll in this subject until the required results are
obtained.

"z frmKetQuaHT =2z~

Sinh vién: Nguyé&n An Binh - Hoc I8p: 14CD-TP - Thudc khoa: Céng nghé& Théng tin
(Pachonliétrinhhocla:012345)

S6TT M& mbén hoc Té&n mbén hoc Bidm thi La&n thi Nhém hoc phén =
4 e et 4 R2o0d i neddlis o ot
Hoc ky- 3
09 3106062112 Mang may tinh va Quan i mang 68 1 2
10 3106062114 Phan tich Thi€t k& hé& théng 65 1 2
n 3106062115 Lép trinh Hudng d6i igng 83 1 2
12 3106062144 Thiét k& énh déng véi Flash 83 1 2
Hoc ky: 4
13 3106062110 Laép trinh Windows 83 1 3
14 3106062111 Thiét k& Web 96 1 3
15 3106062113 HE& Quéan tri co sd di liéu 68 1 3
16 3106062127 Thiét lap hé théng mang 90 1 3 =
Hoc ky: 5
17 3106062117 Lép trinh cd s4 di héu 88 1 B
18 3106062129 Mang Linux 78 1 E
19 3106062130 Mang néng cso 638 1 4
20 3106062141 L&p trinh ASP Net 1 73 1 -
Hoc ky- 6
21 3102023042 Thuc tap t6t nghiép 70 1 5 =
an 23nana3049 Phnt biSe sy ki oc) IS

Pa hoan thanh khoa hoc

Figure 8. Query all students' learning results

In Figure 8, perform the CHECKING procedure to check whether the object has fully satisfied the TIC
or listed the subjects that have passed (training requirements).

CONCLUSIONS

This paper has used graph structure and the Hamiltonian paths in directed graphs to track the process
of checking multiple topological integrity constraints on the temporal database. The problem of finding
the Hamiltonian paths in a directed graph is NP-complete [11]. But in this program, the complexity of the

© 2019 Trudng Pai hoc Cong nghiép Thanh ph H6 Chi Minh

IMPLEMENTING TOPOLOGICAL INTEGRITY CONSTRAINTS ON 135
TEMPORAL DATABASES

procedure SEARCH_SEQUENCE is only O(k "), (see details in [7]).

Versions are training programs that are released over time. In a school, the training of
one discipline usually lasts 3 to 4 years. The current trend, the training program will change each year, so
students can learn new subjects instead of studying subjects follow the old training program. To make this
systematically, the article has implemented a test program on data simulated by the current training
program at a college of information technology faculty. This program manages students who enroll in
credit and annuity academic programs and monitor their academic progress as well as advising students to
register for courses.

The program uses structures: transition state graph, version graph and set of rules that allow
students to transfer to equivalent subjects of other programs (students do not have to wait to save time
study), and use the orderly Hamiltonian paths on the transition graph to build the full range of constraints
that objects in the database must follow in real-time.

The program initially has prospects, encouragement, and suggestions from colleagues, future
research direction is:
- Implementing programs for other faculties, supplementing the detailed curriculum of the subject,
reference books, teaching teachers to help students consider the general curriculum.
- Develop procedures to check for inconsistency or duplication of a set of rules.

REFERENCES
[1] Doucet A., Fauvet M., Gancarski S., Jomier G., Monties S. Using database versions to implement temporal
integrity constraints, In Workshop, Constraint database and applications, Proceedings, Greece, (1997) 219-233.
[2] Doucet A., Monties S. Versions of integrity constraints in multiversion databases, in book title: Database and
expert systems applications, (1997) 252-261.
[3] Cordeiro, R. L. F., Santos C. S., Edelweiss N. Integrity constraint for temporal versioned model: classification,
modeling and verification, in WTDBD, Proceedings Brasilia, Brazil, (2004) 67-72.
[4] Cordeio, R. L. F., Santos C., Edelweiss N. — TVCL Temporal version constraints language (2006), Available at:
http://citeseerx.ist.psu.edu/viewdoc
[5] Chung Pham Van, Phong VVu Thanh, Checking temporal integrity constraints in temporal databases depending on
user selection, Journal science and technology, 52 (4A) (2014) 160-169.
[6] Chung Pham Van, Multiple Versions Topological Integrity Constraints Imposed on Objects in Real Time
Databases, The International Conference on Advanced Technology and Sustainable Development ICATSD2016.
[7] Chung P.V. Phong V.T., Checking Topological Intergity Constraints Impose on Objects in Real Time Databases,
The Conference on Information and Computer Science (NICS2015), Publisher IEEE 2015.
[8] Michael Gertz, Udo Lipeck, “Temporal” Integrity constraints in temporal databases, in Proceedings of the
International workshop on temporal databases Sept 1995.
[9] Chung P., Tuan Anh D. Implementing a query sublanguage for temporal clinical database systems, Proc. of
MUSIC2005, Petaling Jaya, Nov. (2005)14-26.
[10] Pascal Welke, Simple Necessary Conditions for the Existence of a Hamiltonian Path with Applications to
Cactus Graphs, Informatik 111, University of Bonn, Germany, 5 Sep 2017.
[11] Robert Sedgewick, Kevin Wayne. Algorithms (4th edition.). Addison-Wesley Professional, ISBN 978-0-321-
57351-3, (2011), pp. 566-585.
Ngay nhdn bai:31/07/2019
Ngay chdp nhdn ding:01/10/2019

© 2019 Trudng Pai hoc Cong nghiép Thanh phd H6 Chi Minh

http://citeseerx.ist.psu.edu/viewdoc
https://ieeexplore.ieee.org/xpl/conhome/7297714/proceeding
https://ieeexplore.ieee.org/xpl/conhome/7297714/proceeding
https://ieeexplore.ieee.org/xpl/conhome/7297714/proceeding
http://www.informatik.uni-trier.de/~ley/db/conf/tdb/tdb95.html#GertzL95

