Tap chi Khoa hoc va Cong nghé, Sé 38,2019

A NOVEL QUOTIENT PREDICTION FOR FLOATING-POINT DIVISION
PHAM TRAN BICH THUAN

Office of Academic Affairs, Industrial University of HoChiMinh City,
phamtranbichthuan@iuh.edu.vn

Abstract. At present, floating-point operations are used as add-on functions in critical embedded systems,
such as physics, aerospace system, nuclear simulation, image and digital signal processing, automatic
control system and optimal control and financial, etc. However, floating-point division is slower than
floating-point multiplication. To solve this problem, many existing works try to reduce the required
number

of iterations, which exploit large Look Up Table (LUT) resource to achieve approximate mantissa of a
guotient. In this paper, we propose a novel prediction algorithm to achieve an optimal quotient by
predicting certain bits in a dividend and a divisor, which reduces the required LUT resource. Therefore,
the final quotient is achieved by accumulating all predicted quotients using our proposed prediction
algorithm. The experimental results show that only 3 to 5 iterations are required to obtain the final
guotient in a floating-point division computation. In addition, our proposed design takes up 0.84% to
3.28% (1732 LUTs to 6798 LUTSs) and 5.04% to 10.08% (1916 (ALUT) to 3832 (ALUT)) when ported to
Xilinx Virtex-5 and Altera Stratix-11l FPGAs, respectively. Furthermore, our proposed design allows
users to track remainders and to set customized thresholds of these remainders to be compatible with a
specific application.

Keywords. Floating-point number, Floating-point Division, FPU, FPGA, LUT, embedded system.

1. INTRODUCTION

Floating-point numbers can assist to obtain a dynamic range of representable real numbers without
scaling operands [1][2][3]. In order to accelerate operations using floating-point numbers, Floating-Point
Unit (FPU) is implemented and embedded into the IBM System/360 Model 91, a supercomputer in the
mid-1960s, which consists of two floating-point units [3]. FPUs are more expensive and slower than
Central Processing Units (CPUs). To reduce these drawbacks, some researches have been carried on to
accelerate the FPU through speeding up floating-point computations, such as addition, subtraction,
multiplication and division on Field-Programmable-Gate Arrays (FPGA) [4][5] or on Application-
Specific Integrated Circuit (ASIC) [6][7].

An ASIC is an integrated circuit (IC) customized for a particular application rather than a general-
purpose application. However, a design using ASIC is costly and inflexible to be updated. Compared with
this, FPGA is a suitable platform due to its capacities of being easily reconfigured and being upgraded
without further cost. Implementation of complex floating-point applications in a single FPGA is possible
due to the high integration density of current nanometer technologies. FPGA based floating-point
computations have been proposed in [4] and [5].

Compared with basic floating-point operations, such as addition, subtraction and multiplication,
floating-point division is the most complex operation among them. In a floating-point division, mantissas
or significands of two operands are divided and exponents of these two operands are subtracted. In some
cases, a remainder is needed according to the requirement of applications or users who might want to
monitor results of the computation. In [1],[2] and [3], the production of the remainder is handled by the
software. DIV’ and "MOD’ commands are used to execute the division and to generate the quotient and
the remainder, respectively.

The straightforward method to speed up floating-point division is the digit-recurrent division
algorithm, which calculates the quotient using an iterative architecture and generates each quotient per
iteration. A quotientdigit selection function is used in each iteration to determine the quotient. In this
algorithm, the total iterative number is n if the quotient is n-bits. Another method to speed up floating-
point division is the high-radix Sweeney, Robertson and Tocher (SRT) algorithm [1][2][3]. In this

© 2019 Truong Dai hoc Cong nghiép thanh phé Ho Chi Minh

A NOVEL QUOTIENT PREDICTION FOR FLOATING-POINT DIVISION 35

algorithm, each quotient digit is represented by a signed digit {@,a« — 1,-+,1,0,1,---, a}, where E B -

1)] <a<(f—1) and B is the radix value (B =2™). The total iterative number is ™/,,. The

disadvantages of this SRT method are that the divisor must be normalized (MSB equals to 1) before the
division, and the final quotient is represented by sign-digit number (SD). Since each digit represented by
the SD number requires a signed bit to indicate whether it is positive or negative, this leads to using extra
bits. Therefore, there needs an extra function to convert the number represented by SD to the normal
binary number.

As discussed above, the SRT division algorithm for floating-point division is well investigated [8].
However, the disadvantage of this algorithm is large latency and it only can achieve less than 10 bits per
cycle [9]. Another research extends a dedicated floating-point multiplier to support the division. The
disadvantages of this extension are that it lacks of the remainder and the rounding process is complicated
[9]. To solve these issues, the designer should rewrite the programming code [7]. Pineiro and Bruguera
propose LUT approximations and Taylor-series approximations schemes to reduce the number of
iterations by the use of approximate quotient method [10]. But, their method only focuses on software
platform. Therefore, the procedure of the computation is complicated [11]. Amin and Shinwari propose to
exploit variable latency dividers to generate the appropriate number of quotient bits based on different
exponents [12]. On the other hand, Kwon and Draper proposed a fused floating-point
multiplication/division/squaring based on the Taylor-series algorithm [13]. However, the speed of the
proposed method could not meet the requirements for mobile applications [14]. The high-radix algorithm
is proposed to reduce the computational time [15][16][17][18]. The disadvantages of this method are: (1)
the required number of iteration is large; (2) the remainder should be normalized when its Most
Significance Bit (MSB) equals to 1; (3) an additional computation is required to determine the number of
the quotient’s bits in each iteration.

The number of iterations in these methods above is fixed, which depends on the length of
significands. Different to these methods, some methods employ an optimal function to obtain the final
result. They are Co-Ordinate Rotation-Digital-Computer (CORDIC), Newton-Raphson-Base division,
Genetic -Algorithm (GA), and Chemical-Reaction-Optimization (CRO). CORDIC method uses only
shifting, addition and LUT modules to transform an expected angle of hyperbolic and trigonometric
functions to a corresponding set of binary numbers. The Newton-Raphson-Base division is a technique,
which uses iterative architecture to obtain roots [2][19]. The CRO is proposed based on the GA method
[20]. The GA and the CRO methods only can handle randomly selected values, in which the computation
must be repeated until a best adjacent result is achieved. They also exploit iterations to obtain the best
adjacent value based on a data set. Therefore, larger memory resource and higher speed are required for a
system.

In this paper, we propose to enhance the convergence method to achieve the final result based on
CORDIC. We also improve the Newton-Raphson method to achieve the best adjacent result based on the
GA and the CRO methods. If the best adjacent result is achieved, the computation of the proposed method
will cease, which does not depend on the length of significands of a dividend and a divisor. The final
guotient is achieved by accumulating all the predicted quotients in each iteration. Furthermore, the
proposed algorithm allows users to track the remainder during the computation. This is to say, the
remainder can be set to the customized threshold values by users. Our proposed algorithm improves the
scalability of predicted values stored in LUT (using 256 to 4096 elements in LUT) and the scalability of
adjusted exponent values (using NOT gate & AND gate), which is based on our previous work [21].
Therefore, the proposed design achieves relatively accurate predicted quotient in each iteration. The
experimental results show that the proposed computation of the quotient is faster than the existing
methods using LUT.

The rest of this paper is organized as follows: Section 2 presents floating-point numbers and digit
recurrence division algorithm. Section 3 illustrates the proposed algorithm. Section 4 shows experimental
results. Section 5 draws the conclusion.

© 2019 Trudng Pai hoc Cong nghiép thanh phé H5 Chi Minh

36 A NOVEL QUOTIENT PREDICTION FOR FLOATING-POINT DIVISION

2. PRELIMINARIES

A floating-point number can be represented in various formats. Also, the results of floating-point
computations are imprecise. This is to say, each floating-point related computations is approximate.
Transformation among different formats of the input data will be time-consuming. Therefore, the Institute
of Electrical and Electronics Engineers (IEEE) introduced the IEEE 754 standard in 1985, the IEEE 854
standard in 1987, and the IEEE 754 standard in 2008 [2]. Rounding methods are also presented in
[1][2][3][14] to solve the approximation of floating-point computations.

We will present floating-point division algorithm in the followings. A typical n — bits floating-point
number consists of 1 — bit sign (S), e — bits exponent (E) and k — bits unsigned fraction (M). The
length of this numberisn =k + e + 1.

A floating-point number can be represented by Equation (1):

F=(-1%-M-p* 1)
Where (=1)° =1 and (—1)! = —1 . 8 is the base of the exponent E. M = ¥¥ , bir=' and r % <
M<1-rk
Similarly, floating-point numbers F; and F, can be represented as:

F, = (—1)%1- M, - pEabias 2

F, = (_1)52 M, .ﬁEz—bias (3)
Where, bias is a constant number.
Suppose that the result of F; divided by F, is:

F3 = (—1)% - M, - pEs~bias @)
Where M; = 5—: and E3 = E; — E,.
Given a dividend (M,), a divisor (M,), a quotient and remainder (M) should satisfy Equation (5)
[11[21[3]:
M, = M3.M, + My (M; < M,) 5)
At the i iteration, a remainder is computed as shown in Equation (6):

(L if2ri, =M,
M3i = {o, if 2.1;_4 < M, (i€0,1,2,,k) ©)
Where M; = 0.m3ms,--mg; , f =2, k is the length of the unsigned fraction (M). The
computation of the remainder at i*" iteration is as follows:

r;=2.1_1—m3q1 "M, (iel12,-,k) (7)

Where 7; is the remainder at the it" iteration and r;_; is the remainder at the (i — 1)*" iteration. The
remainder at the first iteration is v, = M;. The final remainder can be represented as Mz = ry,.27%.

The total number of iteration depends on the formats of the floating-point number. These formats are
single precision, double precision and double extended.

The architecture of floating-point division is shown in Figure 1. First, two floating-point operands
are unpacked, which will separate the sign, the exponent, and the significand for each operand. It also
converts these operands to the internal format. The intermediate significand and the intermediate
exponent are computed through several steps: dividing significands, normalizing significands, rounding
significands, subtracting exponents, and adjusting exponents. The final result is packed into the
appropriate format, which combines the sign, the exponent and the significand together. The sign of the
quotient is calculated by XORing these operands’ signs.

© 2019 Truong Dai hoc Cong nghiép thanh phdé H6 Chi Minh

A NOVEL QUOTIENT PREDICTION FOR FLOATING-POINT DIVISION 37

Floating-Point Operands

' y

Unpack]
XOR Subtract Divide
Exponents Significands
Adjust Normalize
Exponents
A\ 4
Round
\ 4 v
Adjust .
Exponents Normalize
v ¢ A 4
Pack aE
Quotient

Figure 1: Block diagram of the Floating-point division algorithm

3. THE PROPOSAL ALGORITHMS TO ACCELERATE FLOATING-POINT DIVISION

3.1 The proposed Quotient Prediction Algorithm

Given a dividend F; and a divisor F,, Equation (8) shows how to obtain the quotient F; and the
remainder Fy .

F1=F3'F2+FR (8)
Where F;, F,, F; and Fg are floating-point numbers. They are defined as F;, = (—1)51- M, - BE1,
F,= (-1)%-M,-BE, F; = (=1)% - M5 - BEs and Fg = (—1)5r - Mg - BER, where S;, S,, S5 and Sg
are sign bits. M;, M,, M5 and My are mantissas, and E;, E,, E5 and Ey are exponents.
Equation (8) can be rewritten as:

F,=nF,+F ©))

Where n is a fixed coefficient, and it is represented as n = (—1)5» - M,, - B (S, is a sign bit, M,, is

a mantissa and E,, is an exponent). There should exist F;, which is represented as a complement number
of F;. F{ = (—1)5{ "M - ﬁE{, where S7 is a sign bit, M; is a mantissa and E; is an exponent.

If left and right sides of Equation (9) are divided by F,, we can obtain:

F. F,+F] F,
a_nhth_ 44 (10)
F, F, F,
Equation (10) can be rewritten as :
F. ny.Fy+F] F| Ny.F,+Ff F{ F/
F, F, F, F, F, Fp
(11)

Where n;(i €0,1,--+,1) is the fixed coefficient at the i*" iteration. F{;(i €0,1,--,1) is the
corresponding complement number of F, ; at the i*" iteration. | is the total number of iterations.
From Equations (9) and (11), the final quotient and the final remainder can be computed as follows:

© 2019 Trudng Pai hoc Cong nghiép thanh phé H5 Chi Minh

38 A NOVEL QUOTIENT PREDICTION FOR FLOATING-POINT DIVISION

F3; = Z§:1 ng; Fp = F{,z (12)

| is independent of single precision, double precision and double extended formats, but it depends on
the expected remainder set by users. The computational time of the division varies due to different
coefficients n (n is a prediction) set by users. Unlike the traditional floating-point division computation,
the final quotient of our proposed algorithm is the subtotal of partial predicted quotients at each iteration.
The number of iterations is determined by the accuracy of the prediction and the expected remainder set
by users.

Algorithm 1 shows the proposed quotient prediction algorithm.

Algorithm 1: Proposed floating-point division algorithm

Input: Dividend F;, Divisor F,
Output: Quotient F5, Remainder Fg
1. 15titeration: F;; = Fy ; i*" iteration: F|; = Fy
2. Generate predicted quotient’s coefficient pr;
3. Adjust pr; to obtain predicted quotient n;
4. Obtain quotient F5; (with F3, = 0) and remainder F; ;,, at the i*" iteration
F3;=Fsiq+mn; Flygg =Fi—n-Fp B =F i

5. Compare the new remainder Fy ;,, with the pre-set remainder. If they are the same go to step 1,
else go to step 6.

6. Compute
F3=F; K= F1’,i+1

This algorithm consists of four functions. They are: A.Predicting the quotient’s coefficient function;
B.Adjusting the quotient’s coefficient to obtain the predicted quotient function; C.Obtaining the quotient
value and the remainder value at each iteration; D.Finishing the process and selecting appropriate sign for
the final quotient and the final remainder. Function A is used to obtain the quotient’s coefficient pr; in
Equation (13). The normalization of Function B is to meet the standard formats of IEEE (single precision,
double precision or double extended) and to ensure that the remainder must be positive or equal to zero
after the operations in each iteration. Function C helps to obtain the final quotient F3 using Equation (12)
and to obtain a new dividend for the next iteration, which is the remainder in this iteration. Function D
stops to retrieve quotient and generates results of division.

We will detail these function in the following.

A. Predicting the quotient’s coefficient pr; function:

Predicting the quotient’s coefficient (pr;) function can predict the coefficient pr; at each iteration,
which is stored in an LUT. This LUT is used to store left significant bits of a dividend F; ; and a divisor
F, which are represented using IEEE floating-point format [1][2]. In this format, the first bit in the
mantissa of F;; and F, equals to 1. Thus, it is unnecessary to consider the first bit of F;; and F,. We
combine left significant m-bits of F; ; with left significant m-bits of F,. When m equals to 5, 5-bits of F;
and 5-bits of F, are combined to form one byte (regardless of the first bit (‘1°) of both), which indicates
256 addresses that can be stored in an LUT with 256 elements. When m equals to 7, 7-bits of F; and 7-
bits of F, are combined to form 14-bit, which indicates that 4096 addresses can be stored in an LUT with
4096 elements.

One element, b, in an LUT is 8-bits width, which is defined as b = {b;, b, :**, by}. Among these, b,
is an extended exponent and the rest 7-bit are the mantissa of this quotient. During a division operation, it
automatically uses the first m-bits of F; ;, m-bits of F, to generate the address of these elements (m is 5-bit
or 7-bit). INT operation is to obtain the integer part of the floating point digital number. MOD is to obtain
the decimal fraction part of the floating point digital number.

The predicted quotient’s coefficients pr; is retrieved by the following equations:

© 2019 Truong Dai hoc Cong nghiép thanh phdé H6 Chi Minh

A NOVEL QUOTIENT PREDICTION FOR FLOATING-POINT DIVISION 39

_ Z‘lﬂ:lo Fl.i><2‘("+1)

X; = MOD (x;_) X 2 S €1,2,,7) (13b)
b; = INT(x,) ;€L -,7) (13c)

Where INT operation is to obtain the integer part of the floating point digital number. And MOD
operation is to obtain the decimal fraction part of the floating point digital number.

Algorithm 2 shows predicting the quotient’s coefficients algorithm.

Algorithm 2: Predicting the quotient’s coefficient pr; algorithm

Input: m-bits of F; ;, m-bits of F,
Output: Predicted quotient’s coefficient pr;
1. Combine m-bits of Fy ;, m-bits of F, to form an element’s address
2. Obtain an element from LUT, which has the corresponding element’s address

3. Assign this element’s value to pr;

Algorithm 2 shows that there are three steps to predict quotient’s coefficient. The purpose of step 1 is
to obtain an address. According to this address, the algorithm will obtain a corresponding element’s
address in an LUT. Then, the outcome of pr; is achieved in step 3.

B. Adjusting predicted quotient (n;) function:

Adjusting predicted quotient (n;) function consists of two sub-functions: Adjusting mantissa’s prm;
function and adjusting exponent’s pre; function. ‘Adjusting quotient’ is to adjust the values of the
quotient’s coefficient pr; (including the mantissa prm; and the exponent pre;) to obtain the predicted
quotient (n;). In the adjusting mantissa’s prm; function, in order to smooth computation, the mantissa’s
prm; must be post-normalized. This normalization is to add one or several 0’s to the end of this mantissa,
which makes it to be compatible with the standard format of IEEE. For example, if we use single
precision format, the length of mantissa is 23-bit. The initial length of the mantissa in the proposed
algorithm is 5 (or 7) bits, therefore 18 (or 16) zeros must be added to the end of the mantissa. In adjusting
exponent’s pre; function, pre; is obtained between the mantissas of the dividend F; ; and the divisor F,
are not taken into consideration. However, it is not the final predicted value. In order to obtain an accurate
final value, the exponent of the predicted quotient needs to be formulated according to Equation (14).

Exponent pre; = (expo(F; ;) — expo(F,)) + b, (14)

Where expo(Fy ;) is the exponent of the dividend F; ;, expo(F,) is the exponent of the divisor F,
and b, is the 7t" bit in the LUT element.

The remainder value must be positive or equals to zero after the operation of each iteration. To
ensure this, Equation (14) shows the required operation. ?17 F, ; with 1-bit, is called “adjust” value.
When the 7t" bit of mantissas, Fi; and F,, are equal, Fy ; ; and F, , should be scale to a correct quotient to
ensure that the value of the remainder is positive. If Fy ; , is larger than or equals to F, ; he “adjust” value

equals to 0, else -1
Equation (15) can be rewritten as:

Exponent pre; = (expo(Fl',i) — expo(Fz)) tpri, + (F1,,1.7 -F2.7) (15)
Algorithm 3 shows the adjusting quotient’s coefficient pr; algorithm to obtain the predicted quotient
Tll'.
Algorithm 3: Adjusting predicted quotient n; algorithm

Input: Predicted quotient’s coefficient n;, Dividend F ;, Divisor F,
Output: Predicted quotient n; with length’s IEEE single/double/extended-precision format

1. Adjust the mantissa prm; by adding one or several 0’s to its end.

© 2019 Trudng Pai hoc Cong nghiép thanh phé H5 Chi Minh

40 A NOVEL QUOTIENT PREDICTION FOR FLOATING-POINT DIVISION

2. Adjust exponent pre; by comparing the 5t"/7t"-bit of mantissas Fi{; and F,. If F{;, by
comparing the F, ,, the the “adjust” value equals to 0, else -1.

3. Assign adjusted vales to the predicted quotient n;

In Algorithm 3, there are two main functions. One is used to adjust mantissa value and the other one
is used to adjust exponent value of the predicted quotient’s coefficient pr;, which are based on the initial
values,
such as the predicted quotient’s coefficient pr;, the dividend F; ; and the divisor F,. The mantissa’s pr;
will be adjusted in order to be compatible with the length of IEEE standard format. The exponent’s pre;
depends 5" /7t"-bit of mantissas, F; ; and F,.

C. Obtaining the quotient value and the remainder value at each iteration:

These computations aim to obtain a quotient and a remainder using Equation (12) at the i*" iteration.
This remainder becomes a dividend at the (i + 1)" iteration. Equation (16) is used to obtain the quotient,
which is deduced from Equation (13) and (14):

F3;=Fz;q+m; (16)

Where F;;(i €0,1,---,1) is the quotient of division at the i*" iteration (F;, =0 at the initial

iteration). F3;_, is the quotient at the (i + 1) iteration and n; is the predicted quotient at the i*"
iteration.

Flipn =Fi—n.F (17)
In Equation (17) , Fy;,, is a remainder, F; ; is a dividend, F, is a divisor and n; is the predicted
quotient. The process of identifying F; ;,, occurs at the same time of obtaining F3 ;.
Algorithm 4 obtains the quotient F; ; and F ;, , at the i*" iteration.
Algorithm 4: Obtaining quotient F3; and remainder F; ;,;
Input: Predicted quotient n;, Dividend Fj ; and Divisor F,

Output: The quotient F5; (F3, = 0 at the initial iteration) and remainder Fy ;.
1. Obtain the quotient F3;: F3; = F3;_4 +n;
2. Obtain the remainder F; ;,, by equation: Fy ; ., = F{ ; —n;. F,

D. Ending the process and selecting the appropriate sign for the final quotient and the final
remainder:

F{ ;41 is the remainder after the i*" iteration and it is compared with the required remainder set by
users.

- If the remainder Fy ;,, does not equal to the pre-set remainder, a new iteration will be computed.
F; ;+1 Will become a new dividend while the divisor will still remain the same as F,.

- If the remainder Fy ; ., equals to the pre-set remainder, the computation will be terminated. Fy ;4
is the final remainder and F3 ; is the final quotient

At the end of this computation, we need to assign a positive or a negative sign for the final quotient
and the final remainder.

- If the dividend F; and the divisor F, are either positive or both negative: the sign of the final
guotient is positive.

- If the signs of dividend F; and the divisor F, are opposite, the sign of the final quotient is
negative.

- The sign of the final remainder must be the same sign as the one of the dividend.

Sign bits of the final quotient and the final remainder are computed as follows:

sign(quotient) = sign(dividend)XOR sign(divisor) (18)
sign(remainder) = sign(dividend) (19)

© 2019 Truong Dai hoc Cong nghiép thanh phdé H6 Chi Minh

A NOVEL QUOTIENT PREDICTION FOR FLOATING-POINT DIVISION 41

Figure 2 shows the architecture of the proposed Algorithm 1 using m-bit datapath. This architecture
(F5,0 = 0 at the initial iteration) consists of six parts. (1) Fyoriginar) IS the dividend Fy, Fyoriginar) 1S the
divisor F,, and F;; is the remainder, which becomes a dividend in the next iteration. (2) Multiplexer
(MUX2-1) determines to pass through F; or Fy ;. ;. The multiplexer is controlled by signal ‘Sel cont’. If
‘Sel cont’=0, F; is allowed to pass through the multiplexer, else Fy ;. , is allowed to pass through. ‘Sel
cont’ is initialized to O at the beginning of this computation. (3) ‘Predict quotient’s coefficient pr;’ has the
same definition as shown in Part A. (4)‘Adjust exponent pre;” and ‘Adjust mantissa prm;’ are two
functions in ‘Adjusting predicted quotient (n;)’ function, which have the same definitions as shown in
Part B. (5) Equations (16) and (17) are used to obtain the final quotient and the final remainder at the it"
iteration. They have the same definitions as shown in Part C. (6) The result of comparing the final
remainder with the pre-set remainder can be used to decide whether to continue or to terminate this
computation, which is presented in Part D.

v

F2(Orlglnal) F1 (Original) Fi Ji+1

) i - l Sel_cont
M??nt.ﬁ?)a F \Multlplé*ﬁ)fﬂ'—

-9 Mantissa Fi
w (m-bit) '

[~

F Predict the quotient's coefficient pr;

Mantissa F2.m+1

Mantissa F{'; py4q

Exponent F2 Fexponent | Mantissa

) Exponent F1'il
Dﬁ . v v

Adjust the exponent pre; | Adjust the mantissa prm;

Exponent pre; -~ Mantissa prm;

Predicted quotient n,

”i

v v i v
Obtain the remainder F1 'I.+1 Obtain the quotient F , .
< Fi i+t
F1I,i+1 L 4

The pre—set_‘ (No)

remainder/error

Final (F3_i ‘Quotient, F';,4 :Remainder)

Figure 2: Block diagram of the proposed architecture with m-bit predichtion

3.2 Enhancing the proposed algorithm using FMA instructions

FMA instruction was implemented in 1990 on the IBM RS/6000 processor to facilitate the rounding
part of a floating-point division. FMA is suitable for dot products, matrix multiplications, and polynomial
computations, etc. Nowadays, FMA is used to accelerate computational speed and to reduce errors for the
floating-point division [22][23][24]. Assume that the rounding operations is o, and A, B, C are floating-
point numbers. FMA(A, B, C) is represented as o (A.B + C). This operation is compatible with the IEEE
floating-point format. Therefore, its result must be rounded and normalized [1][2]. Figure 3 shows the

© 2019 Trudng Pai hoc Cong nghiép thanh phé H5 Chi Minh

42 A NOVEL QUOTIENT PREDICTION FOR FLOATING-POINT DIVISION

architecture of the extended implementation with FMA for the proposed algorithm. Compared to Figure
2, “ Obtain the remainder Fy ;" is substituted by FMA in Figure 3. In addition, F, is substituted by — F,
at the input of FMA. This helps FMA to have a negative input value, which is FMA(n;, — F,, Fy ;).

Inputs of FMA function are — F,, n; and F; ;. The final result is as follows:

Fliqn=CF) n+F;=F;,—n"F (20)

+
Fows | [Frowea] [Fim]

Uaressa F, x Sols
(-t
Martissa Fy
)
Prodict the quotient's coefficient pr,
Wartissa F2 wet
Mantissas Fy' ooy
Exponent F2 ¥ msponent Man' e
.p—-fi‘;’l..l
. 4
IAdguu he exponent pvo.”ml the mantissa pm\l
Exporant pra, 1 MarCess prm,

’M'm [Predicted quotiont n,]

"‘
-F R

Fused-Multiply-Add (FMA) Obtain e quotent P
(Ottain the remainder 7 ,,,) . “

Ee
"

'l‘)ﬂ
The pre- st (No)
ki
(Yos)

[Fnu(r"ﬂ—- Fim R dor)]

Figure 3: Block diagram of the extended implementation with FMA

4.2 RESULT AND DISCUSSION

The proposed algorithm is implemented on ISE 14.1 of Xilinx Company, Quartus 9.0 of Altera
Company and ModelSim 6.5a, which utilizes Verilog, a hardware description language, to describe the
algorithm.

Table 1: The results of floating-point division using single precision, double precision and double extended formats

on XC5VLX330
Format Single Precision Double Precision Double Extended
P5 P7 P5 P7 P5 P7
Frequency (MHz) 193 151 162 131 121 112
Number of Slices 139 193 301 327 548 591
(0.07%) (0.09%) (0.15%) (0.16%) (0.26%) (0.28%)
Number of LUTs 1732 2346 3728 4167 6798 7687
(0.84%) (1.13%) (1.80%) (2.01%) (3.28%) (3.71%)

P5: 5-bit prediction; P7: 7-bit prediction

The implementation results of the proposed architecture (refer to Figure 2) are presented in Table 1,
which include the frequency, the number of slices and LUTs on XC5VLX330 FPGA. These results are

© 2019 Truong Dai hoc Cong nghiép thanh phdé H6 Chi Minh

A NOVEL QUOTIENT PREDICTION FOR FLOATING-POINT DIVISION 43

obtained under two cases: (1) left significant 5-bit of the dividend F; and the divisor F,; (2) left
significant 7-bit of the dividend F; and the divisor F,;. Table 1 highlights the differences among
frequency, the number of slices and LUTs. In addition, three formats i.e. single precision, double
precision and double extended precision, are used in these implementations.

From Table 1, when the length of mantissa, exponent and LUT size increases, the occupied area
becomes larger and the frequency decreases. However, the increasing degree of area is insignificant,
because the proposed design occupies 139 to 591 slices (1732 to 7687 LUTS).

Table 2 shows the frequency, the required number of clock cycles for one iteration as well as the
occupied slices and LUTs of our proposed designs on XC5VLX330 FPGA. The results are obtained with
pairs of the dividend F; and the divisor F, using different remainders. For example, mantissa = 1,

exponent = -5, -10, -15, - 20 and the pre-set remainder = 0.003125, 0.00097656, 0.000030518,
0.0000009536.

Table 2: Latencies of 5-bit and 7-bit of the dividend and the divisor for prediction on XC5VLX330

Remainder Frequency | No.lterations Clock Area Area
Exponents (MHz2) (average) cycles Slices LUTs

P5 P7 P5 p7 P5 P7 P5 p7 P5 P7
-5 121 | 112 4 3 5 5 139 | 591 | 1729 | 7687
-10 121 | 110 5 4 5 5 139 | 591 | 1729 | 7688
-15 120 | 111 5 4 5 5 141 | 595 | 1735 | 7695
-20 120 | 110 5 4 5 5 141 | 595 | 1736 | 7695

P5: 5-bit prediction; P7: 7-bit prediction

0100 | gy 0301 Q.901 L] g1 AT 8N LEJ o um.'” WAL na "
01w ¢ 0
012 4 ’
000 - 3 - -
0000 1 ‘
0.0 ! 2
0.000 0 °
0 % 2 .4 8 [JIRL B SN AT M | 0123450700
() (b) (e)
2 jqoaqy LD 1105 08 1106 13 1043 104 HwM oW @m0 LN
"0 M
\H P
s 0
0 "

L)
a
2
e

o uw o

G123 450700 0 v 2 93 4 L B)

(d) (o) n

1 0

63 4y 4THALE

404 40 0 gy ™0 206 Q08 TPY P L A LUB LN
- ” w
a "
n - G
n - A8 - % 2
o » w0
) 1 »
) o °
4
8y WY ¢ 07 0 U 2] 4 s 122 450700
(@) (M) {h
WAA B4 WA " m Lo aTT M A am
'm e e L s o0 200
190 band b
10 b M
w - % - % ®
w w0 12
» % "w
0 0 L}
012348078 Or20ABETRNY 0 Y 23480700
(m) (n) LY

*, The vertical axis is quotient values,
**. the hortzonial axis Is number of Herations

Figure 4: The number of iterations to reach different quotient (pairs of dividend and divisor are randomly selected)
(a) Q=0.161247; (b) Q=5.377; (c) Q= 11.059639; (d) Q= 11.615; (e) Q= 13.94482421875; (f) Q= 26.18; (g) Q=
48.485; (h) Q= 82.05; (i) Q= 176.992; (m) Q= 185.852416; (n) Q= 189.255876608; (k) Q= 378.55.

© 2019 Trudng Pai hoc Cong nghiép thanh phé H5 Chi Minh

44 A NOVEL QUOTIENT PREDICTION FOR FLOATING-POINT DIVISION

Figure 4 shows the relationship between the different obtained quotient values and the number of
iteration. In Figure 4 from (a) to (I), we randomly choose the pairs of the dividend F; and the divisor F,
based on test vector sets as shown in Table 2. It is obvious that the computed quotient value is close to the
required quotient value in the first iteration. It could reach the optimal condition after the second iteration
and remains stable for the rest iterations.

From Figure 4 and Table 2, we can draw a conclusion that approximately 3 to 5 iterations on the
average are needed to obtain the final quotient. A significant speedup of convergence is achieved in the
first two iterations of the computation. The speed of this convergent slows down or remains stable from
the third iteration or the fourth iteration onwards. For example, the results of 10 divided by 3 can be
3.3333, 3.333333, or 3.3333333, which depends on the required precision. If the dividend is larger than
the divisor, the speed of convergence to obtain the final quotient is faster. In the case that the pre-set
reminder is small, the number of iterations to reach the stable state is large, which results in the longer
computational time.

Table 3 shows the implementation results of our proposed algorithms on XC5VLX330 and
EP3SE50F484C2 FPGAs, respectively. In this particular test, the dividend is 0.100001111.27, the divisor
is 0.10010001.2°, the required remainder mantissa is 1, and the required remainder’s exponent is -5. The
results show that the proposed design takes up 0.84% to 3.28% (1732 LUTs to 6798 LUTSs) and 5.04% to
10.08% (1916 (ALUT) to 3832 (ALUT)) on XC5VL X330 and EP3SE50F484C2 FPGAS, respectively.

Table 3: The implementation results of the floating-point division on XC5VLX330 and EP3SE50F484C2

Single precision Double precision Double extended
Platforms Virtex-5 Stratix 111 Virtex-5 Stratix 111 Virtex-5 Stratix 111
Frequency (MHz) 193 179 162 160 162 158
Number of Slices 139 1916 301 2805 548 3832
(ALUT) (ALUT) (ALUT)
(0.07%) (5.04%) (0.15%) (7.38%) (0.26%) (10.8%)
Number of LUTs 1732 1916 3728 2805 6798 3832
(ALUT) (ALUT) (ALUT)
(0.84%) (5.04%) (1.80%) (7.38%) (3.28%) (10.08%)
i (iterations) 5 5 5 5 5 5
Total time (ns) 155 196 182 230 217 263

Table 4 shows a comparison between our proposed algorithm and existing floating-point divisions
for double precision. It is quite hard to make a fair comparison due to different algorithms and different
platforms used in the existing works. Therefore, we focus on the comparison of number of iterations. The
maximum numbers of iterations in [5] and [25] with the non-restoring algorithm and digit-current
algorithm are 29 and 55. Compared to them, 13.8% and 54% reduction on maximum number of iterations
has been achieved by our algorithm. The maximum number of iterations used in [7] in with Newton
Raphson method is 31. Compare with this, our proposed algorithm reduces 19.4% number of iterations.
The maximum number of iterations in [8] with SRT method is 40. Our proposed algorithm only requires
25 iterations. In the worst case, the maximum number of iterations of our proposed algorithm is 20%
larger than the one in [17] and the same in [6]. This also proves that our proposed algorithm is able to
overcome shortcomings of the SRT method, which can efficiently reduce the number of iterations and
computational latency. The proposed design takes up 139 to 548 slices on Xilinx Virtex-5 FPGA, which
is only 50% to 74% of the designs in [5] and [25] and reduces number of iterations with [26] using CR
algorithm.

© 2019 Truong Dai hoc Cong nghiép thanh phdé H6 Chi Minh

A NOVEL QUOTIENT PREDICTION FOR FLOATING-POINT DIVISION 45

Table 4: Latency comparisons between this work and previous works

Works Algorith- | Platform Area Total Cycle Latency
ms of Time (ns) (ns)
Iteratio
-nns
P.Echeverri’a NRA Virtex-4 742 (Slices)** | 24~29 | 3.6~2.9 85.7 ~
[5] 114.4
M. Schulte [6] GA K7 (FPU) - 14 ~ 26 - -
GA GS1 (FPU) - 11~25 - -
P. Soderquist [7] | SRT-8/16 - - 8~15 7.14 57 ~ 107
NRM PAT7200(FP - 14 ~19 7.14 107
S)
NRM PAB000(FP - 31 5 155
S)
S. Oberman [8] SRT-1 | SPECfp92 - > 40 - -
SRT- SPECfp92 - 4~ 40 - -
2/4/8
T. Lang [17] SRT-10 | CMOS std - 20 1 20
(90-nm)
M. Baesler [25] DRA Virtex-5 55 ~ 261 1~55 | 153.7~6.8 | 153.7~374
(Slices)*
Bjorn Liebig CR XC5VFX20 - 10 ~57 5 -
[26] 0T-1
This work PQC Virtex-5 139 (Slices)* 5~25 6.2~5.2 155 ~ 217
548 (Slices)**
Stratix Il | 1916 (ALUTs)* | 5~25 7.8~6.2 196 ~ 263
3832
(ALUTs)**

-: not supported; *: Single precision; **: Double extended
NRA: Non-restoring Algorithm; GA: Goldschmidt Algorithm
SRT: The high-radix Sweeney, Robertson and Tocher Algorithm
NRM: Newton-Raphson Method; DRA: Digit-Recurrent Algorithm
PQC: Predicting the quotient’s coefficient by LUT

5.2 CONCLUSIONS

The floating-point division is the most complicated computations among four floating-point
operations, such as addition, subtraction, multiplication and division. In order to reduce the required
number of iterations, we focus on the acceleration to obtain the final quotient using the prediction of the
guotient at each iteration. In our proposed algorithm, only 3 to 5 iterations are needed in order to reach
final quotient in the floating-point division computation. The major advantage of our algorithm is that it is
independent on different formats of floating-point number. Moreover, our proposed design utilizes FMA
function, which has the advantages of obtaining the remainder easily, avoiding “Normalize” step, and
reducing effort in coding. The experimental results show that the proposed design only occupies 0.07% to
0.26% (139 slices to 548 slices) and 5.04% to 10.08% (1916 (ALUT) to 3832 (ALUT)) on Virtex-5 and
Stratix-111, respectively. Furthermore, our proposed design reduces the maximum number of iterations to
obtain the final quotient, with 26% to 50% reduction of the occupied area compared to the state-of-the-art
works.

© 2019 Trudng Pai hoc Cong nghiép thanh phé H5 Chi Minh

46 A NOVEL QUOTIENT PREDICTION FOR FLOATING-POINT DIVISION

REFERENCES
[1] I. Koren, Computer Arithmetic Algorithms, AK Peters Ltd, 2002.

[2] J.-M. Muller, N. Brisebarre, F.-D. Dinechin, C.-P. Jeannerod, V. Lefevre, G. Melquiond, N. Revol, D. Stehle,
and S. Torres, Handbook of FloatingPoint Arithmetic, Boston-Basel-Berlin, United States, 2009.

[3] T. Lang and M. D.Ercegovac, Digital Arithmetic, Morgan Kaufmann Publishers, 2004,

[4] http://www.xilinx.com/about/all-programmable-leadership/index.htm, 2013.

[5] P. Echeverr’ia and M. L opez-Vallejo, Customizing floating-point units for fpgas: Area-performance-standard
trade-offs, Microprocessors and Microsystems, Available: www.elsevier.com/locate/micpro, vol. 35, pp. 535-546,
2011.

[6] M. Schulte, D. Tan, and C. Lemonds, Floating-point division algorithms for an x86 microprocessor with a
rectangular multiplier, in Computer Design, 2007. ICCD 2007. 25th International Conference on, October 2007,
pp.304-310

[7] P. Soderquist and M. Leeser, Division and square root: choosing the right implementation, IEEE Micro, vol. 17,
no. 4, pp. 56 —66, July/August 1997.

[8] S. Oberman and M. Flynn, Design issues in division and other floating-point operations, IEEE Transactions on
Computers, vol. 46, no. 2, pp. 154 —161, February 1997.

[9] S. Obermann and M. Flynn, Division algorithms and implementations, IEEE Transactions on Computers, vol.
46, no. 8, pp. 833 —854, August 1997.

[10] J.-A. Pineiro and J. Bruguera, High-speed double-precision computation of reciprocal, division, square root,
and inverse square root, IEEE Transactions on Computers, vol. 51, no. 12, pp. 1377 — 1388, December 2002.

[11] D. Wong and M. Flynn, Fast division using accurate quotient approximations to reduce the number of
iterations, IEEE Transactions on Computers, vol. 36, pp. 850-863, 1992.

[12] A. Amin and W. Shinwari, High-radix multiplier-dividers: Theory, design, and hardware, IEEE Transactions on
Computers, vol. 59, no. 8, pp. 1009-1022, August 2010.

[13] T.-J. Kwon and J. Draper, Floating-point division and square root using a taylor-series expansion algorithm,
Microelectronics Journal, Available: www.elsevier.com/locate/mejo, vol. 40, pp. 1601-1605, 2009.

[14] N. Brisebarre, J.-M. Muller, and S. K. Raina, Accelerating correctly rounded floating-point division when the
divisor is known in advance, IEEE Transactions on Computers, vol. 53, no. 8, pp. 1069 — 1072, August 2004.

[15] X. Wang and B. Nelson, Tradeoffs of designing floating-point division and square root on virtex fpgas, in
Field-Programmable Custom Computing Machines, 2003. FCCM 2003. 11th Annual IEEE Symposium on, 2003,
pp. 195-203.

[16] B. P. H. Nikmehr and C. Limb, A novel implementation of radix-4 foating-point division/square-root using
comparison multiples, Computers and Electrical Engineering, Available: www.elsevier.com/locate/compeleceng,
vol. 36, pp. 850-863, 2010.

[17] T. Lang and A. Nannarelli, A radix-10 digit-recurrence division unit: Algorithm and architecture, IEEE
Transactions on Computers, vol. 56, no. 6, pp.727 —739, June 2007.

[18] W. Liu and A. Nannarelli, Power efficient division and square root unit, IEEE Transactions on Computers, vol.
61, no. 8, pp. 1059 —1070, August 2012.

© 2019 Truong Dai hoc Cong nghiép thanh phdé H6 Chi Minh

A NOVEL QUOTIENT PREDICTION FOR FLOATING-POINT DIVISION 47

[19] K. Quinn., The newton raphson algorithm for function optimization. Department of Political Science and The
Center for Statistics and the Social Sciences, pp. 364-384, October 2001.

[20] A. Y. S. Lamand V. O. K. Li, Chemical Reaction Optimization: a tutorial, 2012.

[21] T. Pham, Y. Wang, and R. Li, A variable-latency floating-point division in association with predicted quotient
and fixed remainder, in Circuits and Systems (MWSCAS), 2013 IEEE 56th International Midwest Symposium on,
2013, pp. 1240-1245.

[22] A. Amaricai, M. Vladutiu, and O. Boncalo, Design issues and implementations for floating-point divide - add
fused, Circuits and Systems I1: Express Briefs, IEEE Transactions on, vol. 57, no. 4, pp. 295 -299, April 2010.

[23] S. Boldo and J.-M. Muller, Exact and approximated error of the fma, IEEE Transactions on Computers, vol. 60,
no. 2, pp. 157 —-164, February 2011.

[24] L. Huang, S. Ma, L. Shen, Z. Wang, and N. Xiao, Low-cost binary128 floating-point fma unit design with simd
support, IEEE Transactions on Computers, vol. 61, no. 5, pp. 745 —751, May 2012.

[25] M. Baesler, S. Voigt, and T. Teufel, Fpga implementations of radix-10 digit recurrence fixed-point and
floating-point dividers, in Reconfigurable Computing and FPGAs (ReConFig), 2011 International Conference on,
December 2011, pp. 13 -19.

[26] Bjorn Liebig, Andreas Koch, Low-Latency Double-Precision Floating-PointDivision for FPGAs, 2014
International Conference on Field-Programmable Technology (FPT), pp. 25 — 32.

MOQT CAI TIEN CHO SU UOC LUQNG THUONG SO CHO PHEP TOAN CHIA
SO DAU CHAM PONG

Tém tit. Ngay nay, nhitng phép tinh sé ddu chim dong duoc st dung nhu nhitng ham b6 tro trong cac hé
thdng nhung tu duy tng dung trong cac linh vye nhu vat 1y, hé théng hang khong vii try, mé phong hat
nhan, xu ly tin hiéu hinh anh va ky thuét s0, hé thong diéu khién tu dong va diéu khlen ti wu va tai chinh,
v.v. Tuy nhién, phép toan chia so diu chim dong chdm hon so voi phép toan nhén s6 ddu chim dong. DPé
giai quyét van d& nay, di c6 nhiéu nghién ctru de giam s6 luong vong lap. can thiét dé ra thuong sé bang
viéc dung tai nguyén bang tra (LUT) dé dat t&i xap si gn gia trj thuong sb. Trong bai bao nay, ching toi
dé xuit mot thuat toan ude luong cai tién dé dat dén mot thuong s6 toi uu bé“mg su tién doan nhiing bit
nhit dinh trong s chia va sé bi chia, giam tai nguyén LUT can thiét. Do do, thuong sb cudi cung dat
dugc bang cach tich lity tat ca cac thuong sb tién doan cua giai thut tién doan cua chung toi dé xuat. Két
qua thuc nghiém cho thiy chi can tir 3 dén 5 vong lap dé c6 dugc thuong sb cudi cung trong phép chia sb
ddu chdm dong. Thém nita, thiét ké dugc dé xuat chiém 0.84% dén 3.28% (1732 LUTSs dén 6798 LUTSs)
va 5.04% dén 10.08% (1916 (ALUT) dén 3832 (ALUT)) khi dugc cai dit trén chip Xilinx Virtex-5 va
Altera Stratix-III FPGAs twong (mg. Hon nita, thiét ké dé xuat cho phép nhiing nguoi sir dung theo doi
phan du dé dit ngudng tuy chinh cho sé du twong thich véi nhitng tmg dung chuyén biét cua nguoi sir
dung.
Tir khéa. S6 ddu chidm dong, phép toan chia s6 ddu chim dong, don vi xu 1y s6 ddu cham dong (FPU),
FPGA, bang tra (LUT), hé théng nhtng.

Ngay nhdn bai:08/08/2019

Ngady chdp nhdn ding:25/10/2019

© 2019 Trudng Pai hoc Cong nghiép thanh phé H5 Chi Minh

https://ieeexplore.ieee.org/xpl/conhome/7063887/proceeding
https://ieeexplore.ieee.org/xpl/conhome/7063887/proceeding

